bài 5:tìm giá trị nhỏ nhất cảu biểu thức
a. A=x^2-6x+11
b.B=x^2-20x+101
c.C=x^2-4xy+5y^2+10x-22y+28
tìm giá trị nhỏ nhất của biểu thức
A=x2-6x+11
B=x2-20x+101
C=x2-4xy+5y2+10x-22y+28
Ta có
A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2
=>MIN A=2 khi và chỉ khi x-3=0 hay x=3
B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1
=>MIN B=1 khi và chỉ khi x-10=0 hay x=10
Ta lại có
C=x2-4xy+5y2+10x-22y+28=(x2+(-2y)2-2x2xy+2x5xx-2x5x2y+52)+(y2_2y+12)+2
=(x-2y+5)2+(y-1)2+2>=2
=>MIN C=2 khi và chỉ khi x-2y+5=0 và y-1=0 hay x=-3 và y=1
1)Tìm giá trị nhỏ nhất của biêu thức
a) A=x2-6x+11
b) B=x2-20x+101
c) C=x2-4xy+5y2+10x-22y+28
a, Ta có :\(A=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)do (x-3)^2\(\ge0\)
"Dấu = xảy ra \(\Leftrightarrow x=3\)
Vậy Min A=2 khi x=3
b, Tương tự
Tìm giá trị nhỏ nhất
x^2-6x+11
B) x^2-20x+101
C) x^2-4xy+5y^2+10x-22y+28
Tìm giá trị lon nhất
4x-x^2+3
-x^2+6x-11
Tìm giá trị nhỏ nhất của bt
x^2-6x+11
x^2-20x+101
x^2-4xy+5y^2+10x-22y+28
\(x^2-6x+11=x^2-2\times3\times x+3^2+2=\left(x-3\right)^2+2\)
vì \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+2\ge2\)
vậy MIN = 2 . dấu = xảy ra <=> x = 3
\(x^2-20x+101=x^2-2\cdot10\cdot x+10^2+1=\left(x-10\right)^2+1\)
vì\(\left(x-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+1\ge1\)
vậy Min = 1 . dấu = xảy ra <=> x = 10
C) \(x^2-4xy+5y^2+10x-22y+28\)
\(\left(x^2-4xy+4y^2+10x-20y+25\right)+\left(y^2-2y+1\right)+2\)
\(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)>2
Vậy GTNN=2\(\Leftrightarrow X=-3;y=1\)
Tìm giác trị nhỏ nhất của biểu thức :
1. A = x2-6x+11
2. B = x2-20x+101
3. C=x2-4xy+5y2+10x-22y+28
b) Lm tương tự
c) \(C=x^2-4xy+5y^2+10x-22y+28\)
=> C = \(\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\)
=> C = \(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Vì \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) => C \(\ge\) 2
=> Dấu bằng xảy ra <=> \(\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy GTNN của C =2 khi x = -3; y= 1
1) A = x2 - 6x + 11 = ( x2 - 6x + 9 ) + 2 = (x - 3)2 +2
Vì (x - 3 )2 \(\ge\) 0 => ( x - 3)2 + 2 \(\ge\) 2
=> Dấu = xảy ra <=> x = 3
Vậy .......................
2b) Ta có: \(B=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra khi x-10=0 <=>x=10
Vậy: GTNN của biểu thức B là 1 khi x=10
Tìm giá trị nhỏ nhất của biểu thức
a,x2-20x+101
b,4a2+4a+2
c,x2-4xy+5y2+10x-22y+28
a) Ta có : x2 - 20x + 101
= x2 - 20x + 100 + 1
= (x - 10)2 + 1
Mà (x - 10)2 lớn hơn hoặc bằng 0
Nên (x - 10)2 + 1 lớn hơn hoặc bằng 1
=> GTNN của biểu thức là 1 . khi x = 10
b) 4a2+4a+2
=(2a)2+2.2a+1+1
=(2a+1)2+1
Vì (2a+1)2 \(\ge\)0 với mọi x \(\in\)R
=>(2a+1)2+1\(\ge\)1 với mọi x \(\in\)R
dấu "=" xảy ra <=> 2a+1=0 <=> 2a=-1 <=> a= -1/2
câu c bạn tham khảo tại link sau nhé !
https://h oc 24.vn/hoi-dap/question/394806.html
tìm giá trị nhỏ nhất của biểu thức
a, A=x^2-6x+11
b, B=x^2-20x+101
c, C= x^2-6x+11
d, D= (x-1)(x+2)(x+3)(x+6)
e,E= x^2-2x+y^2+4y+8
f, x^2-4x+y^2-8y+6
g, G=x^2-4xy+5y^2+10x-22y+28
a/ Ta có:
\(A=x^2-6x+11\)
\(A=x\cdot x-3x-3x+3\cdot3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\)
Nên GTNN của \(\left(x-3\right)^2\)là 0
=> \(A_{min}=0+2=2\)
mình chỉ biết a. thôi
a) ta có : \(A=x^2-6x+11\)
\(A=x.x-3x-3x+3.3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
vì \(\left(x-3\right)^2\ge0\)
nên GTNN của \(\left(x-3\right)^2\)là \(0\)
\(\Rightarrow\)\(A_{min}\)\(=0+2=2\)
oOo Không đủ can đảm để oOo copy mà nói nhưu mk tự làm
BÀI 11:Tìm giá trị nhỏ nhất của biểu thức:
a. A = x2 – 6x + 11
b. B = 2x2 – 20x + 101
c. C = x2 – 4xy + 5y2 + 10x – 22y + 28
\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)
a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
\(minA=2\Leftrightarrow x=3\)
b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)
\(minB=51\Leftrightarrow x=5\)
c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của biểu thức:
A=x^2+4x+7
B=x^2-20x+101
C=x^2-4xy+5y^2+10x-22y+28
\(A=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)
\(A_{min}=3\) khi \(x=-2\)
\(B=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)
\(B_{min}=1\) khi \(x=10\)
\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left(x;y\right)=\left(-3;1\right)\)