Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Vũ Minh Huy
Xem chi tiết

\(\Delta=\left(-4\right)^2-4\left(-3k+1\right)\)

\(=16+12k-4=12k+12\)

Để phương trình có nghiệm kép thì \(\Delta\)=0

=>12k+12=0

=>k=-1

Khi k=-1 thì phương trình sẽ trở thành \(x^2-4x-3\cdot\left(-1\right)+1=0\)

=>\(x^2-4x+3+1=0\)

=>\(x^2-4x+4=0\)

=>\(\left(x-2\right)^2=0\)

=>x-2=0

=>x=2

Nguyễn Việt Lâm
11 tháng 1 lúc 20:39

Ta có: \(\Delta'=4-\left(-3k+1\right)=3k+3\)

Pt có nghiệm kép khi và chỉ khi: \(3k+3=0\Rightarrow k=-1\)

Khi đó nghiệm kép là: \(x=\dfrac{-\left(-4\right)}{2}=2\)

Phạm Trần Bảo Trâm
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
20 tháng 5 2021 lúc 22:34

Ta có: \(\Delta=-7k^2-42k+49\)

Để phương trình có nghiệm kép \(\Leftrightarrow\Delta=-7k^2-42k+49=0\) \(\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-7\end{matrix}\right.\)

  Vậy ...

Trần Vũ Minh Huy
Xem chi tiết
Sinh Viên NEU
11 tháng 1 lúc 23:54

b) Để phương trình có hai nghiệm phân biệt:

\(\Delta'>0\Leftrightarrow\left(-2\right)^2+1.\left(3k-1\right)>0\)

\(\Leftrightarrow3k+3>0\Leftrightarrow k< -1\)

Vậy k < -1 thì phương trình có hai nghiệm phân biệt

c) Với k  < -1 phương trình có hai nghiệm phân biệt:

\(x_1=2+\sqrt{3k+3}\) và \(x_2=2-\sqrt{3k+3}\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=1-3k\end{matrix}\right.\)

d) \(\left(x_1+x_2\right).3x_1x_2=4.3.\left(1-3k\right)=12-36k\)

 

Thanh Trúc
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 4 2021 lúc 16:37

a. Bạn tự giải

b. Pt có nghiệm kép khi:

\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)

Khi đó: \(x_{1,2}=m+1=2\)

c. Do pt có nghiệm bằng 4:

\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)

\(\Leftrightarrow8-4m=0\Rightarrow m=2\)

\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)

Giáp Văn Long
Xem chi tiết
Lê Song Phương
14 tháng 3 2022 lúc 18:09

a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)

Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)

Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.

Câu b mình nhìn không rõ đề, bạn sửa lại nhé.

Khách vãng lai đã xóa
Lê Huỳnh Châu
Xem chi tiết
Nguyễn Nam Dương
1 tháng 2 2022 lúc 10:37

TL :

Đề sai

\(x1^2\)là số gì

HT

Khách vãng lai đã xóa
Lê Song Phương
1 tháng 2 2022 lúc 17:19

Ý bạn ấy là \(x_1^2\)nhưng bạn ấy chưa biết chỗ để đánh chỉ số dưới. Bạn nhấn vào cái biểu tượng x2 ở chỗ khung điều chỉnh thì con trỏ hạ xuống để bạn gõ chỉ số dưới. Xong rồi thì nhấn vào biểu tượng đó lần nữa.

Khách vãng lai đã xóa
Lê Song Phương
1 tháng 2 2022 lúc 17:27

Xét pt \(x^2-2\left(m-4\right)x+2m-20=0\), có \(a=1;b=-2\left(m-4\right);c=2m-20\)

Ta có \(\Delta=b^2-4ac=\left[-2\left(m-4\right)\right]^2-4.1.\left(2m-20\right)\)
\(=4\left(m-4\right)^2-8m+80\)\(=4\left(m^2-8m+16\right)-8m+80\)\(=4m^2-32m+64-8m+80\)\(=4m^2-40m+144\)\(=4\left(m^2-10m+25\right)+44\)\(=4\left(m-5\right)^2+44\)

Do \(\left(m-5\right)^2\ge0\Leftrightarrow4\left(m-5\right)^2+44\ge44>0\Leftrightarrow\Delta>0\)

Vậy pt đã cho luôn có 2 nghiệm phân biệt.

Khách vãng lai đã xóa
Aocuoi Huongngoc Lan
Xem chi tiết
Nguyễn Thanh Hằng
22 tháng 1 2022 lúc 18:36

a/ Xét phương trình :  \(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)

Ta có :

\(\Delta'=b'^2-ac=\left(k-1\right)^2-2\left(k-2\right)=k^2-2k+1-2k+4=k^2-4k+5=\left(k-2\right)^2+1>0\forall k\)

\(\Leftrightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi k

b/ Theo định lí Vi - ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2\left(k-1\right)\\x_1.x_2=\dfrac{c}{a}=2\left(k-2\right)\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2\right|=4\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=16\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=16\)

\(\Leftrightarrow x_1^2+x_2^2+4\left(k-2\right)=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+4k-8=16\)

\(\Leftrightarrow4\left(k-1\right)^2-4\left(k-2\right)+4k-8=16\)

\(\Leftrightarrow4k^2-8k+4-4k+8+4k-8=0\)

\(\Leftrightarrow k=\pm3\)

Vậy....

 

 

Hải Yến
Xem chi tiết
Khang Diệp Lục
3 tháng 2 2021 lúc 8:46

Thay k=1 và HPT ta có: 

\(\left\{{}\begin{matrix}x+y=3.1-2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y=1\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=2\\3y=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (2;-1)

Khang Diệp Lục
3 tháng 2 2021 lúc 9:17

b) tìm k để hệ phương trình có nghiệm ( x ; y) sao cho \(x^2-y-\dfrac{5}{y}+1=4\)

\(\left\{{}\begin{matrix}x+y=3k-2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\2x-\left(3k-2-x\right)=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\2x-3k+2+x=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\3x=3k+3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\x=k+1\end{matrix}\right.\)

Ta có \(\text{ x= k+1 }=>y=2k-3\) (*)

Thay vào biểu thức đã cho ở đề bài ta có :

 \(x^2-y-\dfrac{5}{y}+1=4\)

\(\left(k+1\right)^2-2k+3-\dfrac{5}{2k-3}+1=4\)

\(k^2+2k+1-2k+3-\dfrac{5}{2k-3}+1=4\)

Sau một hồi bấm máy tính Casio thì ra k=2

Vậy k=2 thì Thỏa mãn yêu cầu đề bài

 

 

Khang Diệp Lục
3 tháng 2 2021 lúc 9:18

Lần sau bạn dùng Latex đánh đề bài cho dễ nhìn nha, mình sợ chép lại đề bài bị sai @@