Cho phương trình: \(3x^2-\left(3k-2\right)x-3k-1=0\)
a. CMR: phương trình luôn có nghiệm với mọi k
b, Tìm k để phương trình có nghiệm kép
c, Tìm k để phương trình có hai nghiệm khác nhau
GIÚP MÌNH VỚI Ạ!!!
Cho phương trình x2\(-4x-3k+1=0\)
Tìm k phương trình có nghiệm kép.Tìm nghiệm kép khi đó
\(\Delta=\left(-4\right)^2-4\left(-3k+1\right)\)
\(=16+12k-4=12k+12\)
Để phương trình có nghiệm kép thì \(\Delta\)=0
=>12k+12=0
=>k=-1
Khi k=-1 thì phương trình sẽ trở thành \(x^2-4x-3\cdot\left(-1\right)+1=0\)
=>\(x^2-4x+3+1=0\)
=>\(x^2-4x+4=0\)
=>\(\left(x-2\right)^2=0\)
=>x-2=0
=>x=2
Ta có: \(\Delta'=4-\left(-3k+1\right)=3k+3\)
Pt có nghiệm kép khi và chỉ khi: \(3k+3=0\Rightarrow k=-1\)
Khi đó nghiệm kép là: \(x=\dfrac{-\left(-4\right)}{2}=2\)
Cho phương trình x2 - 2 ( k - 1 ) x + k - 3 = 0
1. CHứng minh rằng phương trình luôn có nghiệm với mọi k
2. tìm k để phương trình có 2 nghiệm đều dương
với giá trị nào của k thì phương trình \(2x^2+\left(k-9\right)x+k^2+3k+4=0\) có nghiệm kép ( x là ẩn số )
Ta có: \(\Delta=-7k^2-42k+49\)
Để phương trình có nghiệm kép \(\Leftrightarrow\Delta=-7k^2-42k+49=0\) \(\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-7\end{matrix}\right.\)
Vậy ...
Cho PT: \(x^2-4x-3k+1\)
b)Tìm k có 2 nghiệm phương trình
c)Giải phương trình. Tính x1+x2 , x1.x2
d)Giải phương trình. Tính \(\left(x_1+x_2\right)3x_1x_2\)
b) Để phương trình có hai nghiệm phân biệt:
\(\Delta'>0\Leftrightarrow\left(-2\right)^2+1.\left(3k-1\right)>0\)
\(\Leftrightarrow3k+3>0\Leftrightarrow k< -1\)
Vậy k < -1 thì phương trình có hai nghiệm phân biệt
c) Với k < -1 phương trình có hai nghiệm phân biệt:
\(x_1=2+\sqrt{3k+3}\) và \(x_2=2-\sqrt{3k+3}\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=1-3k\end{matrix}\right.\)
d) \(\left(x_1+x_2\right).3x_1x_2=4.3.\left(1-3k\right)=12-36k\)
cho phương trình \(x^2-2\left(m+1\right)x+4m=0\)
a, giải phương trình khi m = 3
b, tìm m để để phương trình có nghiệm kép. Tìm nghiệm kép đó
c, xác định phương trình có 1 nghiệm bằng 4. Tìm nghiệm còn lại
a. Bạn tự giải
b. Pt có nghiệm kép khi:
\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)
Khi đó: \(x_{1,2}=m+1=2\)
c. Do pt có nghiệm bằng 4:
\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)
\(\Leftrightarrow8-4m=0\Rightarrow m=2\)
\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)
Cho phương trình: \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a) CMR phương trình luôn có hai nghiệm phân biệt với mọi m
b) Xác định m để phương trình có hai nghiệm \(x_1,x_2\) thoả mãn \(1< x_1< x_2< 6\)
a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.
Câu b mình nhìn không rõ đề, bạn sửa lại nhé.
Cho phương trình x² - 2(m-4)x + 2m - 20 = 0 (*)
a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
b) tìm m để 3.x1 + 2.x2 = 5m -16
c) cho A= x1² + x2² + 6.x1.x2
c.1) tìm m để A = -44
c.2) tìm giá trị nhỏ nhất của A và giá trị tương ứng của m.
d) tìm m để phương trình có hai nghiệm có hai nghiệm đối nhau.
e) tìm m để phương trình có hai nghiệm là hai số nghịch đảo của nhau.
f) tìm m để phương trình có hai nghiệm có hai nghiệm trái dấu.
g) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dấu.
h) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dương.
i) tìm m để phương trình có hai nghiệm có hai nghiệm cùng âm.
j) tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m.
k) cho B= x1² + x2² - 22.x1.x2 - x1².x2²
l) tìm m để phương trình có một nghiệm x1=2. Tìm nghiệm còn lại.
m) tìm m để x1³ + x2³ <0
n) lập phương trình có 2 nghiệm gấp đôi hai nghiệm của phương trình (*)
TL :
Đề sai
\(x1^2\)là số gì
HT
Ý bạn ấy là \(x_1^2\)nhưng bạn ấy chưa biết chỗ để đánh chỉ số dưới. Bạn nhấn vào cái biểu tượng x2 ở chỗ khung điều chỉnh thì con trỏ hạ xuống để bạn gõ chỉ số dưới. Xong rồi thì nhấn vào biểu tượng đó lần nữa.
Xét pt \(x^2-2\left(m-4\right)x+2m-20=0\), có \(a=1;b=-2\left(m-4\right);c=2m-20\)
Ta có \(\Delta=b^2-4ac=\left[-2\left(m-4\right)\right]^2-4.1.\left(2m-20\right)\)
\(=4\left(m-4\right)^2-8m+80\)\(=4\left(m^2-8m+16\right)-8m+80\)\(=4m^2-32m+64-8m+80\)\(=4m^2-40m+144\)\(=4\left(m^2-10m+25\right)+44\)\(=4\left(m-5\right)^2+44\)
Do \(\left(m-5\right)^2\ge0\Leftrightarrow4\left(m-5\right)^2+44\ge44>0\Leftrightarrow\Delta>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt.
\(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)
a. Chứng minh phương trình luôn có 2 nghiệm phân biệt
b.Tìm k để phương trình có 2 nghiệm x1,x2. Thỏa mãn \(|x_1|+|x_2|=4\)
a/ Xét phương trình : \(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)
Ta có :
\(\Delta'=b'^2-ac=\left(k-1\right)^2-2\left(k-2\right)=k^2-2k+1-2k+4=k^2-4k+5=\left(k-2\right)^2+1>0\forall k\)
\(\Leftrightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi k
b/ Theo định lí Vi - ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2\left(k-1\right)\\x_1.x_2=\dfrac{c}{a}=2\left(k-2\right)\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=4\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=16\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow x_1^2+x_2^2+4\left(k-2\right)=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+4k-8=16\)
\(\Leftrightarrow4\left(k-1\right)^2-4\left(k-2\right)+4k-8=16\)
\(\Leftrightarrow4k^2-8k+4-4k+8+4k-8=0\)
\(\Leftrightarrow k=\pm3\)
Vậy....
cho hệ phương trình x + y = 3k - 2
2x - y = 5 với k là tham số
giải hệ phương trình khi k = 1
tìm k để hệ phương trình có nghiệm ( x ; y) sao cho x^2 - y - 5/ y + 1 = 4
Thay k=1 và HPT ta có:
\(\left\{{}\begin{matrix}x+y=3.1-2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+y=1\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+2y=2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+2y=2\\3y=-3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiệm (x;y) = (2;-1)
b) tìm k để hệ phương trình có nghiệm ( x ; y) sao cho \(x^2-y-\dfrac{5}{y}+1=4\)
\(\left\{{}\begin{matrix}x+y=3k-2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\2x-\left(3k-2-x\right)=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\2x-3k+2+x=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\3x=3k+3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\x=k+1\end{matrix}\right.\)
Ta có \(\text{ x= k+1 }=>y=2k-3\) (*)
Thay vào biểu thức đã cho ở đề bài ta có :
\(x^2-y-\dfrac{5}{y}+1=4\)
⇔\(\left(k+1\right)^2-2k+3-\dfrac{5}{2k-3}+1=4\)
⇔\(k^2+2k+1-2k+3-\dfrac{5}{2k-3}+1=4\)
Sau một hồi bấm máy tính Casio thì ra k=2
Vậy k=2 thì Thỏa mãn yêu cầu đề bài
Lần sau bạn dùng Latex đánh đề bài cho dễ nhìn nha, mình sợ chép lại đề bài bị sai @@