\(15x\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{4}x\left(-\dfrac{2}{3}\right)^2\)
\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\)
\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\)
\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\)
\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\left(dkxd:x\ne0,x\ne5\right)\\ =\dfrac{3x-x-1}{x\left(x-5\right)}=\dfrac{2x-1}{x^2-5x}\)
----------------------------------------
\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\left(dkxd:x\ne0,y\ne-2\right)\\ =\dfrac{8}{4}.\dfrac{15x^2.x^3}{3x^2}=10x^3\)
------------------------------------------
\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\left(dkxd:x\ne1,x\ne-1\right)\\ =\dfrac{8\left(y-1\right)}{3\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)^2}{4\left(y-1\right)^3}\\ =\dfrac{2\left(x-1\right)}{3\left(x+1\right)\left(y-1\right)^2}\)
rút gọn các phân thức
a,\(\dfrac{7xy^3\left(x-2y\right)}{14x^2y^2\left(x-2y\right)^2}\)
b,\(\dfrac{4a^2-8ab}{2\left(2b-a\right)^3}\)
c,\(\dfrac{3x^3-3x}{x^4-1}\)
d,\(\dfrac{45x\left(3-x\right)}{15x\left(x-3\right)^3}\)
c: \(=\dfrac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}=\dfrac{3x}{x^2+1}\)
Tìm x :
1) \(\left(-0,75x+\dfrac{5}{2}\right).\dfrac{4}{7}-\left(-\dfrac{1}{3}\right)=-\dfrac{5}{6}\)
2) \(\left(4x-9\right)\left(2,5+\dfrac{-7}{3}x\right)=0\)
3) \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
4)\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Thu gọn các đơn thức trong biểu thức đại số sau:
C = \(\dfrac{7}{9}x^3y^2.\dfrac{6}{11}axy^3+-5bx^2y^4.-\dfrac{1}{2}axz+ax.\left(x^2y\right)^3\)
D = \(\dfrac{\left(3x4y^3\right)^2.\left(\dfrac{1}{6}x^2y\right)+\left(8x^{n-9}\right).\left(-2x^{9-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)}\)
Sao câu hỏi của bn giống của mình vậy ???
Giải bpt sau
a, \(\left(x+3\right)^2-\left(x-3\right)^2\le3\left(x+1
\right)\)
b, \(2\left(x+3\right).\left(x+4\right)>\left(x-2\right)^2+\left(x-1\right)^2\)
c, \(5x^2-18x+19-\left(2x-3\right)^2>0\)
d, \(\dfrac{\left(3x-2\right)^2}{4}-\dfrac{3\left(x-2\right)}{8}-1>\dfrac{-15x\left(5-3x\right)}{2}\)
e, \(2x^2+2x+2-\dfrac{15\left(x-1\right)}{2}-1>2x\left(x-2,75\right)\)
g, \(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}< \dfrac{x\left(2x+3\right)}{2}-5\)
Thu gọn các đơn thức trong biểu thức đại số sau:
C = \(\dfrac{7}{9}x^3y^2.\dfrac{6}{11}axy^3+-5bx^2y^4.-\dfrac{1}{2}axz+ax.\left(x^2y\right)^3\)
D = \(\dfrac{\left(3x4y^3\right)^2.\left(\dfrac{1}{6}x^2y\right)+\left(8x^{n-9}\right).\left(-2x^{9-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)}\) ( với axyz khác 0)
1.rút gọn biểu thuc P=\(\dfrac{2}{x+3}+\dfrac{1}{x-3}+\dfrac{9-x}{9-x^2}\) với x\(\ne-3vàx\ne3\)
2.thực hiện phép tính \(\left(2x^4-3x^3-3x^2+6x-1\right):\left(x^2-2\right)\)
\(\left(15x^4y^6-12^3y^4-18x^2y^3\right):\left(-6x^2y^2\right)\)
Bài 8:
b)\(\left(\dfrac{-4}{3}\right)+\left(\dfrac{-2}{5}\right)+\left(\dfrac{-3}{2}\right)\)
c) \(\dfrac{4}{5}-\left(\dfrac{-2}{7}\right)-\dfrac{-7}{10}\)
d) \(\dfrac{2}{3}-\left[\left(\dfrac{-7}{4}\right)-\left(\dfrac{1}{2}+\dfrac{3}{8}\right)\right]\)
\(b,=-\dfrac{40}{30}-\dfrac{12}{30}-\dfrac{45}{30}=-\dfrac{97}{30}\\ c,=\left(\dfrac{4}{5}+\dfrac{7}{10}\right)+\dfrac{2}{7}=\dfrac{3}{2}+\dfrac{2}{7}=\dfrac{25}{14}\\ d,=\dfrac{2}{3}+\dfrac{7}{4}+\dfrac{1}{2}+\dfrac{3}{8}\\ =\left(\dfrac{2}{3}+\dfrac{1}{2}\right)+\left(\dfrac{7}{4}+\dfrac{3}{8}\right)=\dfrac{7}{6}+\dfrac{17}{8}=\dfrac{79}{24}\)
c: \(\dfrac{4}{5}-\dfrac{-2}{7}-\dfrac{-7}{10}\)
\(=\dfrac{56}{70}+\dfrac{20}{70}+\dfrac{49}{70}\)
\(=\dfrac{125}{70}=\dfrac{25}{14}\)
1. \(\dfrac{5\left(x-1\right)+2}{6}-\dfrac{7x-1}{4}=\dfrac{2\left(2x+1\right)}{7}-5\)
2. \(x-\dfrac{3\left(x+30\right)}{15}-24\dfrac{1}{2}=\dfrac{7x}{10}-\dfrac{2\left(10x+2\right)}{5}\)
3. \(14\dfrac{1}{2}-\dfrac{2\left(x+3\right)}{5}=\dfrac{3x}{2}-\dfrac{2\left(x-7\right)}{3}\)
4. \(\dfrac{x+1}{3}+\dfrac{3\left(2x+1\right)}{4}=\dfrac{2x+3\left(x+1\right)}{6}+\dfrac{7+12x}{12}\)
5. \(\dfrac{3\left(2x-1\right)}{4}-\dfrac{3x+1}{10}+1=\dfrac{2\left(3x+2\right)}{5}\)
6. \(x-\dfrac{3}{17}\left(2x-1\right)=\dfrac{7}{34}\left(1-2x\right)+\dfrac{10x-3}{2}\)
7. \(\dfrac{3\left(x-3\right)}{4}+\dfrac{4x-10,5}{10}=\dfrac{3\left(x+1\right)}{5}+6\)
8. \(\dfrac{2\left(3x+1\right)+1}{4}-5=\dfrac{2\left(3x-1\right)}{5}-\dfrac{3x+2}{10}\)