Giải hệ \(\left\{{}\begin{matrix}xy+3y^2-x+4y=7\\2xy+y^2-2x-2y+1=0\end{matrix}\right.\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}3y=\dfrac{y^2+2}{x^2}\\3x=\dfrac{x^2+2}{y^2}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^2y+xy^2+x-5y=0\\2xy+y^2-5y+1=0\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy+2y+x=2\\2x^2-y^2-2y-2=0\end{matrix}\right.\)
ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html
b.
Với \(xy=0\) không là nghiệm
Với \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)
\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)
\(\Leftrightarrow5-x^2=5x-2x^2\)
\(\Leftrightarrow...\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\2x^2-\left(y+1\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\6x^2-3\left(y+1\right)^2=3\end{matrix}\right.\)
\(\Rightarrow5x^2-x\left(y+1\right)-4\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(5x+4\left(y+1\right)\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=-\dfrac{5x+4}{4}\end{matrix}\right.\)
Thế vào 1 trong 2 pt ban đầu...
\(\left\{{}\begin{matrix}xy+3y^2-x+4y=7\\2xy+y^2-2x-2y+1=0\end{matrix}\right.\)
Lời giải:
Xét PT $(2)$:
$\Leftrightarrow (y^2+2xy+x^2)-2(x+y)+1-x^2=0$
$\Leftrightarrow (x+y)^2-2(x+y)+1-x^2=0$
$\Leftrightarrow (x+y-1)^2-x^2=0$
$\Leftrightarrow (y-1)(2x+y-1)=0$
$\Rightarrow y=1$ hoặc $2x+y-1=0$
Nếu $y=1$: Thay vào PT $(1)$ ta thấy mọi số thực $x$ đều thỏa mãn
Nếu $2x+y-1=0\Rightarrow y=1-2x$. Thay vào PT $(1)$ có:
$10x^2-20x=0$
$\Leftrightarrow 10x(x-2)=0\Rightarrow x=0$ hoặc $x=2$
Nếu $x=0$ thì $y=1$
Nếu $x=2\Rightarrow y=-3$
Vậy HPT có nghiệm $y=1; x$ tủy ý hoặc $y=-3; x=2$
Lời giải:
Xét PT $(2)$:
$\Leftrightarrow (y^2+2xy+x^2)-2(x+y)+1-x^2=0$
$\Leftrightarrow (x+y)^2-2(x+y)+1-x^2=0$
$\Leftrightarrow (x+y-1)^2-x^2=0$
$\Leftrightarrow (y-1)(2x+y-1)=0$
$\Rightarrow y=1$ hoặc $2x+y-1=0$
Nếu $y=1$: Thay vào PT $(1)$ ta thấy mọi số thực $x$ đều thỏa mãn
Nếu $2x+y-1=0\Rightarrow y=1-2x$. Thay vào PT $(1)$ có:
$10x^2-20x=0$
$\Leftrightarrow 10x(x-2)=0\Rightarrow x=0$ hoặc $x=2$
Nếu $x=0$ thì $y=1$
Nếu $x=2\Rightarrow y=-3$
Vậy HPT có nghiệm $y=1; x$ tủy ý hoặc $y=-3; x=2$
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3-30=0\\x^2y+x\left(1+y+y^2\right)+y-11=0\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}3xy+2y=5\\2xy\left(x+y\right)+y^2=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)
TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)
Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)
TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)
2 câu dưới hình như em hỏi rồi?
1, Giải các hệ phương trình sau
a, \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=26\\x+y=6\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}2x^2+x-y=0\\xy+3y-5x=7\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}\left(x-1\right)^2=1-y\\\left(x^2-y\right)^2=2xy\left(1+x\right)\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}x^2y+y^2x=2\\x^3+y^3+6=8x^2y^2\end{matrix}\right.\)
Giải HPT:
\(\left\{{}\begin{matrix}xy^2+2x-4y=-1\\x^2y^3+2xy^2-4x+3y=2\end{matrix}\right.\)
Giải hpt: 1, \(\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\x^2+y^2=x-4y\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\xy+y^2+3y+1=0\end{matrix}\right.\)
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)
\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)
Thay vào pt dưới:
\(\left(y+3\right)^2+y^2=y+3-4y\)
\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)
\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)
\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)
TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:
\(\left(-2y-1\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)
TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:
\(\left(-2y-2\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)
Giải hệ phương trình :
a, \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x^2+4x=5y\\y^2+4y=5x\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x^2+2y^2+xy=4\\2x^2+xy+3y^2=6\end{matrix}\right.\)
e,\(\left\{{}\begin{matrix}4x^2+8x=5y\\y^2+4y=10x\end{matrix}\right.\)
mấy bài dạng như này mk sẽ hướng dẩn nha .
a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha
b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)
\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................
c) đây là phương trình đối xứng loại 1 , có trên mang nha .
câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .
Giải hệ phương trình:
a) \(\left\{\begin{matrix}2x^2-15xy+4y^2-12x+45y-24=0y^2\\x^2+xy-2y^2-3x-3y=0\end{matrix}\right.\)
b) \(\left\{\begin{matrix}3\left|x-3\right|+5y+9=0\\2x-\left|y+4\right|-7=0\end{matrix}\right.\)