cho a,b,c là số thực không âm thỏa mãn a+b+c=1 CMR rằng 2a+b+c>=4(a+b)(b+c)(c+a)
Cho a,b,c là số thực không âm thỏa mãn a+b+c=1 . Chứng minh rằng 2a+b+c \(\ge\)4(a+b)(b+c)(c+a)
Đặt \(x=a+b;y=b+c,z=c+a\)
\(\Rightarrow x+y+z=2\)
Ta cần chứng minh:\(x+z\ge4xyz\)
Ta có:\(4\left(x+z\right)=\left(x+y+z\right)^2\left(x+z\right)\ge4y\left(x+z\right)\left(x+z\right)\)
\(=4y\left(x+z\right)^2\ge4y.4xz=16xyz\)
\(\Rightarrow\)\(x+z\ge4xyz\)
Hoàn tất chứng minh.Dấu "=" xảy ra khi \(x=z=\frac{1}{2};y=1\) thế vào tìm a,b,c
Các Ctv hoặc các giáo viên helpp ạ
Cho a,b,c là số thực dương không âm thỏa mãn
Cho a,b,c là số thực dương không âm thỏa mãn \(a+b+c=1\) . Chứng minh rằng :
\(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}>10\)
Cho ba số thực không âm a,b,c và thỏa mãn a + b + c =1.Chứng minh rằng a + 2b + c ≥ 4(1 - a)(1 - b)(1 - c)
Xét \(VT=a+2b+c=1+b\left(1\right)\)
Áp dụng BĐT AG-GM:
\(4\left(1-a\right)\left(1-c\right)\le\left(1-a+1-c\right)^2=\left(2-a-c\right)^2=\left(1+a+b+c-a-c\right)^2=\left(1+b\right)^2\left(2\right)\)
\(\Rightarrow4\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(1-b\right)\left(1+b\right)^2\)
Mà \(\left(1-b\right)\left(1+b\right)^2-\left(1-b\right)=\left(1+b\right)\left(1-b^2-1\right)=-b^2\left(1+b\right)\le0,\forall b\ge0\)
Do đó \(\left(1-b\right)\left(1+b\right)^2\le1+b\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta có ĐPCM
Dấu "=" \(\Leftrightarrow a=c=\dfrac{1}{2};b=0\)
Cho a, b, c là ba số thực không âm và thỏa mãn: a + b + c = 1. Chứng minh rằng 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ 7
Vì a, b, c không âm và có tổng bằng 1 nên 0 ≤ a , b , c ≤ 1 ⇒ a ( 1 − a ) ≥ 0 b ( 1 − b ) ≥ 0 c ( 1 − c ) ≥ 0 ⇒ a ≥ a 2 b ≥ b 2 c ≥ c 2 ⇒ 5 a + 4 ≥ a 2 + 4 a + 4 = ( a + 2 ) 2 = a + 2 T ư ơ n g t ự : 5 b + 4 ≥ b + 2 ; 5 c + 4 ≥ c + 2 ⇒ 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ ( a + b + c ) + 6 = 7 ( đ p c m )
cho a,b,c là các số thực không âm thỏa mãn : a+b+c=1 .
Chứng minh rằng : ab+bc+ca-3abc \(\ge\)1/4
Cho a,b,c là các số thực dương không âm thỏa mãn a+b+c=1.CMR
ab/(c+1) +bc/(a+1) + ca/(b+1) </ 1/4
Ta có BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) (tự c/m)
Áp dụng vào,ta có: \(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)+\left(c+b\right)}\le\frac{ab}{4\left(c+a\right)}+\frac{ab}{4\left(c+b\right)}\) (Làm tắt,ráng hiểu)
Chứng minh tương tự và cộng theo vế:
\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{c}{4}=\frac{a+b+c}{4}=\frac{1}{4}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
cho a,b,c là các số thực dương thỏa mãn \(a+b+c+1=4abc\).CMR
\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
cho a,b,c là 3 số thực không âm thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c)
Cho a,b,c là số thực dương không âm thỏa mãn \(a+b+c=1\). Chứng minh rằng :
\(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}>10\)