Cho 2 đoạn thẳng MN và PQ cắt nhau tại trung điểm I của mỗi đường .CM
a)∆IPN=∆IQM
b)PN\\QM
Cho 2 đoạn thẳng MN và PQ cắt nhau tại trung điểm I của mỗi đường C
CM: a) ∆IPN=∆IQM
CM: b)PQ\\QM
a, xét ∆IPN và ∆IQM có : ^PIN = ^QIM (đối đỉnh)
MI = IN do I là trđ của MN (Gt)
PI = QI do I là trđ của PQ (gt)
=> ∆IPN = ∆IQM (c-g-c)
b, ∆IPN = ∆IQM (câu a)
=> ^MQI = ^IPN mà 2 góc này so le trong
=> QM // PN
a,Xét \(\Delta PIN\)và \(\Delta QIM\)có :
\(PI=QI\left(gt\right)\)
\(IN=IM\left(gt\right)\)
\(I_1=I_2\left(ĐĐ\right)\)
\(=>\Delta PIN=\Delta QIM\left(c-g-c\right)\)
b,Theo câu a ta đã cm được : \(\Delta PIN=\Delta QIM=>PNI=QMI\left(goc-tuong-ung\right)\)
Do 2 góc này bằng nhau và ở vị trí sole trong
\(=>NP//QM\)
Cho hai đoạn thẳng MN và PQ cắt nhau tại trung điểm I của mỗi đường. Chứng minh : a) ∆IPN = ∆IQM. b) PN//QM
b: Xét tứ giác MPNQ có
I là trung điểm của MN
I là trung điểm của PQ
Do đó: MPNQ là hình bình hành
Suy ra: PN//QM
Cho hai đoạn thẳng MN và PQ cắt nhau tại A và A là trung điểm của mỗi đoạn thẳng. Cho I là trung điểm của đoạn thẳng MQ. Đường thẳng AI cắt PN tại R. Chứng minh:
a) tam giác AMQ = tam giác ANP
b) MQ // PN
c) RP = RN
Ta có hình vẽ sau:
a/ Xét ΔAMQ và ΔANP có:
AM = AN (gt)
\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)
AQ = AP (gt)
=> ΔAMQ = ΔANP (c.g.c) (đpcm)
b/ Vì ΔAMQ = ANP (ý a)
=> \(\widehat{QMA}=\widehat{PNA}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> MQ // PN (đpcm)
c/+) Xét ΔAMI và ΔANR có:
\(\widehat{MAI}=\widehat{NAR}\) (đối đỉnh)
AM = AN(gt)
\(\widehat{AMI}=\widehat{RNA}\) (so le trong do MQ // PN (ý b))
=> ΔAMI = ΔANR (g.c.g)
=> MI = NR (1)
+) CM tương tự ta có:
ΔAQI = ΔAPR (g.c.g)
=> QI = PR (2)
Từ (1); (2) và I là trung điểm của MQ
=> RP = RN (đpcm)
Cho 2 đường thẳng MN,PQ cắt nhau tại A và A là trung điểm của mỗi đoạn thẳng. Cho I là trung điểm của đoạn thẳng MQ. Đường thẳng AI cắt PN tạiR
a) chứng minh rằng: tam giác AMQ= Tam giác ANP
b) chứng minh rằng:MQ//PN
c) chứng minh rằng: RP=RN
a) Xét \(\Delta AMQ,\Delta ANP\) có :
\(AM=AN\) (A là trung điểm của MN)
\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)
\(AQ=AP\) (A là trung điểm của QP)
=> \(\Delta AMQ=\Delta ANP\left(c.g.c\right)\) (*)
b) Từ (*) suy ra : \(\left\{{}\begin{matrix}\widehat{MQA}=\widehat{NPA}\\\widehat{QMA}=\widehat{PNA}\end{matrix}\right.\) (2 góc tương ứng)
Mà thấy : Mỗi cặp góc bằng nhau ở vị trí so le trong
=> \(MQ//PN\left(đpcm\right)\)
c) Ta có : \(MQ=PN\) [từ (*)]
Lại có : \(IM=IQ\) (I là trung điểm của MQ)
Suy ra : \(RP=RN\rightarrowđpcm\)
Cho 2 đoạn thẳng MN và PQ cắt nhau tại trung điểm O của mỗi đoạn thẳng a/ Chứng minh : Tam giác MOQ = Tam giác NOP b/Chứng minh : MQ // PN c/ Qua O vẽ đường thẳng vuông góc với MQ tại điểm H ( H thuộc MQ )Chứng minh HO vuông góc với PN
b: Xét tứ giác MPNQ có
O là trung điểm của MN
O là trung điểm của PQ
Do đó: MPNQ là hình bình hành
Suy ra MQ//PN
Cho đường tròn (O;R) đường kính AB. Gọi H là một điểm bất kỳ trên đoạn OA (H khác hai điểm O, A). Dựng đường thẳng d vuông góc với OA tại H. Trên d lấy điểm C ở ngoài đường tròn (O). Kẻ các tiếp tuyến CM, CN với đường tròn (O); M và N là tiếp điểm, M cùng phía với A bờ CH. Các đường thẳng CM, CN cắt đường thẳng AB tại P và Q. Đường thẳng qua O và vuông góc với AB cắt MN tại K. CK cắt AB tại I. Chứng minh rằng: 1) HC là tia phân giác của góc MHN 2) I là trung điểm của đoạn thẳng PQ 3) Ba đường thẳng PN, QM và CH đồng quy.
Hai đoạn thẳng MN và PQ cắt nhau tại trung điểm O của mỗi đoạn . Chứng minh MP = QN ; MQ = PN .
mình không vẽ hình được, sorry bạn nhé
ΔMPO và ΔQNO có
O1=O2 (đối đỉnh)
MO= OQ (gt)
PO= QN (gt)
⇒ ΔMOP= ΔQNO (c.g.c)
⇒ MP= QN (hai cạnh tương ứng)
ΔMQO vàΔPNO có
MO= OQ (gt)
PO= QN (gt)
O3= O4 (đối đỉnh)
⇒ΔMQO=ΔPNO(c.g.c)
⇒MQ=PN(2 cạnh tương ứng)
Cho đường tròn (O), 2 đường kính MN và PQ vuông góc với nhau. I là 1 điểm thuộc cung nhỏ PN (I không trùng P;N). MI cắt PQ tại H.
a) Cm: Tứ giác NIHO nội tiếp
b) Cm: IP.MQ=IM.PH
a, Cm tu giac NIHO noi tiep:
CM - goc HON bang 90 do
- goc HIN bang 90 do
=>goc HON + goc HIN =180 do
Ma HON va HIN la hai Goc doi => DPCM
b,Cm IP.MQ=IM.PH
Cm - goc IHP bang goc MQI (= goc INM)
-goc IPH bang goc IMQ
=> tam giac IPH dong dang voi tam giac IMQ theo truong hop g.g
=>IP/PH=IM/MQ (canh ti le tuong ung)
=>DPCM