Giải phương trình: \(sin^2x+\frac{sin^23x}{3sin3x}\left(cos3xsin^3x+sin3xcos^3x\right)=sinxsin^23x\)
Em cảm ơn mọi người nhiều ạ !
Giải các phương trình sau:
\(5\sin^22x-6\sin4x-2\cos^2x=0\)
\(2\sin^23x-10\sin6x-\cos^23x=-2\)
\(\sin^2x\left(\tan x+1\right)=3\sin x\left(\cos x-\sin x\right)+3\)
\(6\sin x-2\cos^3x=\frac{5\sin4x.\cos x}{2\cos2x}\)
Mọi người giúp em với, em cảm ơn ạ
Bài tập quy về dạng phương trình cơ bản:
\(1.\sin\left(x-\frac{\pi}{3}\right)+2cos\left(x-\frac{\pi}{6}\right)=0\);
\(2.\sin^23x=cos^2x\);
\(3.sin\left(2x-\frac{7\pi}{2}\right)+cos2x=1\)
\(4.\sqrt{2}cos\left(x-\frac{3\pi}{4}\right)=1+sinx\)
\(5.\sin\left(2x-\frac{7\pi}{2}\right)+cós2x=1\)
Câu 1:
\(\Leftrightarrow sinx.cos\frac{\pi}{3}-cosx.sin\frac{\pi}{3}+2\left(cosx.cos\frac{\pi}{6}+sinx.sin\frac{\pi}{6}\right)=0\)
\(\Leftrightarrow sinx+\frac{1}{\sqrt{3}}cosx=0\)
Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cosx\)
\(tanx+\frac{1}{\sqrt{3}}=0\Rightarrow tanx=-\frac{1}{\sqrt{3}}\Rightarrow x=\frac{\pi}{6}+k\pi\)
Câu 2:
\(\Leftrightarrow1-cos6x=1+cos2x\)
\(\Leftrightarrow-cos6x=cos2x\)
\(\Leftrightarrow cos\left(\pi-6x\right)=cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\pi-6x+k2\pi\\2x=6x-\pi+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
Câu 3:
\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}-4\pi\right)+cos2x=1\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}\right)+cos2x=1\)
\(\Leftrightarrow cos2x+cos2x=1\)
\(\Leftrightarrow cos2x=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Câu 4:
\(\sqrt{2}\left(cosx.cos\frac{3\pi}{4}+sinx.sin\frac{3\pi}{4}\right)=1+sinx\)
\(\Leftrightarrow-cosx+sinx=1+sinx\)
\(\Leftrightarrow cosx=-1\Rightarrow x=\pi+k\pi2\)
Câu 5:
Giống câu 3, chắc bạn ghi nhầm đề
Giải phương trình
\(\left(3-4\sin^2x\right)\left(3-4\sin^23x\right)=1-2\cos10x\)
Với \(sinx=0\) không phải nghiệm (vế trái bằng 9, vế phải hiển nhiên nhỏ hơn 9)
Với \(sinx\ne0\):
\(\Rightarrow\left(3sinx-4sin^3x\right)\left(3-4sin^23x\right)=sinx-2sinx.cos10x\)
\(\Leftrightarrow sin3x\left(3-4sin^23x\right)=sinx-2sinx.cos10x\)
\(\Leftrightarrow3sin3x-4sin^33x=sinx-sin11x+sin9x\)
\(\Leftrightarrow sin9x=sinx-sin11x+sin9x\)
\(\Leftrightarrow sin11x=sinx\)
\(\Leftrightarrow...\)
\(cos2x-cos6x+4\left(3sinx-4sin^3x+1\right)=0\)
\(sin^2x-2sinx+2=sin^23x\)
\(sinx+cosx=\sqrt{2}\left(2-sin^32x\right)\)
\(\left(cos4x-cos2x\right)^2=5+sin3x\)
\(\sqrt{5+sin^23x}=sinx+2cosx\)
\(sinx-2sin2x-3sin3x=2\sqrt{2}\)
\(tanx+cotx=2sin\left(x+\frac{\pi}{4}\right)\)
Giải phương trình lượng giác:
24) \(\cos2x-\cos6x+4\left(3\sin x-4\sin^3x+1\right)=0\)
25) \(\sin^2x-2\sin x+2=\sin^23x\)
SGP.Capheny - Trang của SGP.Capheny - Học toán với OnlineMath
@SGP.Capheny
30. \(\tan x+\cot x=2\sin\left(x+\frac{\pi}{4}\right)\)
ĐK: \(x\ne\frac{k\pi}{2}\)
pt <=> \(\frac{1}{\sin x.\cos x}=2\sin\left(x+\frac{\pi}{4}\right)\)
<=> \(\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)\)
Đánh giá: \(-1\le\sin2x\le1\)
=> \(\orbr{\begin{cases}\frac{1}{\sin2x}\le-1\\\frac{1}{\sin2x}\ge1\end{cases}}\)
\(-1\le\sin\left(x+\frac{\pi}{4}\right)\le1\)
Như vậy dấu "=" xảy ra <=> \(\orbr{\begin{cases}\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)=-1\\\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}\)
<=> \(\orbr{\begin{cases}\sin2x=\sin\left(x+\frac{\pi}{4}\right)=-1\\\sin2x=\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}\)
TH1: \(\sin2x=\sin\left(x+\frac{\pi}{4}\right)=-1\)
<=> \(\hept{\begin{cases}2x=-\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{\pi}{4}+k\pi\\x=-\frac{3\pi}{4}+k2\pi\end{cases}}\)loại
TH2:
\(\sin2x=\sin\left(x+\frac{\pi}{4}\right)=1\)
<=> \(\hept{\begin{cases}2x=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{4}+k2\pi\end{cases}}\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)
Vậy ...
29) \(\sin x-2\sin2x-\sin3x=2\sqrt{2}\)
<=> \(\left(\sin x-\sin3x\right)-2\sin2x=2\sqrt{2}\)
<=> \(-2.\sin x\cos2x-2\sin2x=2\sqrt{2}\)
<=> \(\sin x\cos2x+\sin2x=-\sqrt{2}\)
Ta có: \(\left(\sin x\cos2x+\sin2x\right)^2\le\left(\sin^2x+1\right)\left(\sin^22x+\cos^22x\right)=\sin^2x+1\le2\)
( theo bunhia)
=> \(-\sqrt{2}\le\sin x\cos2x+\sin2x\le\sqrt{2}\)
Dấu "=" xảy ra <=> \(\frac{\sin x}{1}=\frac{\cos2x}{\sin2x}\)(1) và \(\sin x\cos2x+\sin2x=-\sqrt{2}\)(2)
(1) <=> \(\frac{\sin x.\cos2x}{1}=\frac{\cos^22x}{\sin2x}\)=> (2) <=> \(\frac{\cos^22x}{\sin2x}+\sin2x=-\sqrt{2}\)
<=> \(\frac{1}{\sin2x}=-\sqrt{2}\)<=> \(\sin2x=-\frac{\sqrt{2}}{2}\)<=> \(\orbr{\begin{cases}x=-\frac{\pi}{8}+k\pi\\x=-\frac{3\pi}{8}+k\pi\end{cases}}\)
(1) <=> \(\sin x.\sin2x=\cos2x\)=> (2) <=> \(\sin x.\sin x.\sin2x+\sin2x=-\sqrt{2}\)
<=> \(\frac{\sin^2x}{2}+\frac{1}{2}=+1\Leftrightarrow\sin^2x=1\)=> \(\cos^2x=0\)loại vì \(\sin2x=-\frac{\sqrt{2}}{2}\)
Vậy pt vô nghiệm
28. \(\sqrt{5+\sin^23x}=\sin x+2\cos x\)
có: \(\sqrt{5+\sin^23x}\ge\sqrt{5}\)
\(\left(\sin x+2\cos x\right)^2\le\left(1^2+2^2\right)\left(\sin^2x+\cos^2x\right)=5\)
<=> \(\sin x+2\cos x\le\sqrt{5}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sin3x=0\\\frac{1}{2}=\frac{\sin x}{\cos x}\\\sin x+2\cos x=\sqrt{5}\end{cases}}\)hệ vô nghiệm
Giải phương trình lượng giác sau:
\(sin\left(\dfrac{x}{3}-\dfrac{\pi}{4}\right)=cos\left(\dfrac{\pi}{2}-x\right)\)
\(sin^22x=sin^23x\)
a: \(\Leftrightarrow sin\left(\dfrac{x}{3}-\dfrac{pi}{4}\right)=sinx\)
=>x/3-pi/4=x+k2pi hoặc x/3-pi/4=pi-x+k2pi
=>2/3x=-pi/4+k2pi hoặc 4/3x=5/4pi+k2pi
=>x=-3/8pi+k3pi hoặc x=15/16pi+k*3/2pi
b: =>(sin3x-sin2x)(sin3x+sin2x)=0
=>sin3x-sin2x=0 hoặc sin 3x+sin 2x=0
=>sin 3x=sin 2x hoặc sin 3x=sin(-2x)
=>3x=2x+k2pi hoặc 3x=pi-2x+k2pi hoặc 3x=-2x+k2pi hoặc 3x=pi+2x+k2pi
=>x=k2pi hoặc x=pi/5+k2pi/5 hoặc x=k2pi/5 hoặc x=pi+k2pi
Giải các PT sau
1. \(\cos^2\left(x-30^{\cdot}\right)-\sin^2\left(x-30^{\cdot}\right)=\sin\left(x+60^{\cdot}\right)\)
2. \(\sin^22x+\cos^23x=1\)
3. \(\sin x+\sin2x+\sin3x+\sin4x=0\)
4. \(\sin^2x+\sin^22x=\sin^23x\)
1.Pt \(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{6}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\\2x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)\(\left(k\in Z\right)\)
2.\(sin^22x+cos^23x=1\)
\(\Leftrightarrow\dfrac{1-cos4x}{2}+\dfrac{1+cos6x}{2}=1\)
\(\Leftrightarrow cos6x=cos4x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{5}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow x=\dfrac{k\pi}{5}\)\(\left(k\in Z\right)\) (Gộp nghiệm)
Vậy...
3. \(Pt\Leftrightarrow\left(sinx+sin3x\right)+\left(sin2x+sin4x\right)=0\)
\(\Leftrightarrow2.sin2x.cosx+2.sin3x.cosx=0\)
\(\Leftrightarrow2cosx\left(sin2x+sin3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=-sin2x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\sin3x=sin\left(\pi+2x\right)\end{matrix}\right.\)(\(k\in Z\))
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)(\(k\in Z\))\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))
Vậy...
4. Pt\(\Leftrightarrow\dfrac{1-cos2x}{2}+\dfrac{1-cos4x}{2}=\dfrac{1-cos6x}{2}\)
\(\Leftrightarrow cos2x+cos4x=1+cos6x\)
\(\Leftrightarrow2cos3x.cosx=2cos^23x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cosx=cos3x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)
Vậy...
Giải phương trình:
a) \(Sin^22x+Cos^23x=0\)
b) \(Sin\left(x+\frac{\pi}{3}\right)Cos\left(x-\frac{\pi}{6}\right)=1\)
c) \(Cos^2x+Cos^22x+Cos^23x=1\)
Tìm khoảng đơn điệu của hàm số:
1, \(y=x^2-2\left|x\right|-3\)
2, \(y=sin\left(2x\right)-cos\left(2x\right)+3x\)
Mọi người giúp mình với ạ!! Mình cảm ơn nhiều!!!