Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Nguyễn Như Bình
Xem chi tiết
nguyễn thị mai anh
19 tháng 7 2016 lúc 11:42

ta thấy : \(T=\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{98.99}+\frac{1}{99.100}\)  và T > 0 

mà  \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{98.99}+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\) 

=> \(0< T< \frac{97}{300}\)  

Chứng tỏ tổng T không phải là một số tự nhiên ! ... 

Búp Bê
Xem chi tiết
Võ Đông Anh Tuấn
30 tháng 8 2016 lúc 10:36

Ta có : \(\frac{1}{4.5}< \frac{1}{4^2}< \frac{1}{3.4}\)

              \(\frac{1}{5.6}< \frac{1}{5^2}< \frac{1}{4.5}\)

               .......

               \(\frac{1}{99.100}< \frac{1}{99^2}< \frac{1}{98.99}\)

              \(\frac{1}{101.100}< \frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}+\frac{1}{101.100}< A< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(\frac{1}{4}-\frac{1}{101}< A< \frac{1}{3}-\frac{1}{100}\Rightarrow\frac{97}{404}< A< \frac{97}{300}\)

=> A không phải là số tự nhiên ( đpcm )

Nguyễn Minh Tuấn
Xem chi tiết
Đặng Thị Ngọc Anh
Xem chi tiết
 .
5 tháng 9 2019 lúc 18:22

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)

Ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100

=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)

=7/12+(1/5.6+...+1/99.100)>7/12(1)

A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100

=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)

=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100)    ( Cộng thêm cả 2 vế với 1/2+1/4+..+1/100)

=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)

=1/51+1/52+..+1/100

Dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm

A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)

<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6

=>A<5/6(2)

từ 1 và 2 => đpcm

Nguyễn Hoàng Hải
Xem chi tiết
Akai Haruma
31 tháng 3 2023 lúc 16:41

 

Lời giải:

$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1000^2}$

$< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}$

$=\frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$

$=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$

$=\frac{1}{4}+\frac{1}{2}-\frac{1}{1000}$

$< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}$

Ta có đpcm.

LÊ HÔNG NGOC
Xem chi tiết
Edogawa Conan
8 tháng 11 2018 lúc 20:30

Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29

                     2S = 2(1 + 2 + 22 + 23 + ... + 29)

                     2S = 2 + 22 + 23 + ... + 210

                 2S -  S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)

                        S = 210 - 1 = 28.4 - 1

Vậy S < 5 x 28

LÊ HÔNG NGOC
9 tháng 11 2018 lúc 20:10

Bn có thể giải cho mik bài2 và bài4 đc ko ngay bây giờ nhé

Trần Tuấn Minh
Xem chi tiết
Dr. Lemon
Xem chi tiết
phan thanh ngan
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2020 lúc 12:51

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

phan thanh ngan
30 tháng 8 2020 lúc 12:00
https://i.imgur.com/VAewh4D.jpg
phan thanh ngan
31 tháng 8 2020 lúc 11:56

Giúp mik vs ạ.Mik đag cần