Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Trọng Lâm
Xem chi tiết
Nguyễn Thị NgọcBích
Xem chi tiết
Trung Dũng
Xem chi tiết
Võ Thắng
Xem chi tiết
họ và tên
Xem chi tiết
Roronoa Zoro
8 tháng 11 2016 lúc 22:16

1) M = \(x^2+y^2-xy-x+y+1\)=\(x\left(x-y\right)-\left(x-y\right)+\left(y^2-1\right)\)=\(\left(x-1\right)\left(x-y\right)+\left(y^2-1\right)\)

Vậy Mmin =\(\left(y^2+1\right)\)khi \(x-1=0\)hoặc \(x-y=0\)

                                        =>     \(x=1\)            =>\(x=y\)

Mình chỉ có thể giúp bạn câu 1 thôi

                                                                                                                                                                                                   

Nguyễn Tiến Dũng
Xem chi tiết
Akai Haruma
28 tháng 10 2018 lúc 23:42

Lời giải:

\(\left\{\begin{matrix} x+y\leq 2\\ x^2+xy+y^2=3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (x+y)^2\leq 4\\ x^2+xy+y^2=3\end{matrix}\right.\)

\(\Rightarrow (x+y)^2-(x^2+xy+y^2)\leq 1\Leftrightarrow xy\leq 1\)

Do đó:

\(t=x^2+y^2-xy=(x^2+y^2+xy)-2xy=3-2xy\geq 3-2.1=1\)

Mặt khác:

\(\frac{x^2-xy+y^2}{x^2+xy+y^2}=\frac{x^2+xy+y^2-2xy}{x^2+y^2+xy}=1-\frac{2xy}{x^2+xy+y^2}=3-(2+\frac{2xy}{x^2+xy+y^2})\)

\(=3-\frac{2(x+y)^2}{x^2+xy+y^2}=3-\frac{2(x+y)^2}{3}\leq 3\)

\(\Rightarrow t= x^2-xy+y^2\leq 3(x^2+xy+y^2)=3.3=9\)

Vậy \(t_{\min}=1\Leftrightarrow x=y=1\)

\(t_{\max}=9\Leftrightarrow (x,y)=(\sqrt{3}; -\sqrt{3})\)và hoán vị

0o0^^^Nhi^^^0o0
Xem chi tiết
ngonhuminh
19 tháng 5 2018 lúc 16:59

C=(x^2+xy+y^2=(x+y)^2/2+(x^2+y^2)≥}>0moi x,y

..

3B=(3x^2-3xy+3y^2)/C

3B=[2(x^2-2xy+y^2)-(x^2+xy+y^2)]/C=2(x-y)^2/C-1

3B≥-1=>B≥-1/3

khi x=y

B=[3(x^2+xy+y^2)-2(x^2+2xy+y^2)]/C

=3-2(x+y)^2/C≤3

B≤3

khi x=-y

ghdoes
Xem chi tiết
Tin Trần Thị
Xem chi tiết