chứng minh dãy\(u\left(n\right)=\left(1+\frac{1}{n}\right)\) có giới hạn
cho dãy số \(\left(u_n\right)\) được xác định như sau: \(\hept{\begin{cases}u_1=u_2=1\\u_{n+1}=\sqrt{u_n}+\sqrt{u_{n-1}},\end{cases}\left(n\ge2,n\in N\right)}\)
Chứng minh dãy \(\left(u_n\right)\)có giới hạn hữu hạn. Tính giới hạn đó.
Cho dãy số (\(u_n\)) xác định bởi: \(\left\{{}\begin{matrix}0< u_n< 1\\u_n\left(1-u_{n+1}\right)>\dfrac{1}{4},\forall n\ge1\end{matrix}\right.\)
Chứng minh dãy số (\(u_n\)) có giới hạn hữu hạn khi \(n\rightarrow\infty\)
\(u_n-u_{n+1}=u_n+\left(1-u_{n+1}\right)-1\ge2\sqrt{u_n\left(1-u_{n+1}\right)}-1>0\)
\(\Rightarrow u_n>u_{n+1}\Rightarrow\) dãy giảm
Dãy giảm và bị chặn dưới bởi 0 nên có giới hạn hữu hạn.
Gọi giới hạn đó là k
\(\Rightarrow k\left(1-k\right)\ge\dfrac{1}{4}\Rightarrow\left(2k-1\right)^2\le0\Rightarrow k=\dfrac{1}{2}\)
Vậy \(\lim\left(u_n\right)=\dfrac{1}{2}\)
cho dãy số \(\left(u_n\right)\) được xác định như sau: \(\hept{\begin{cases}u_1=u_2=1\\u_{n+1}=\sqrt{u_n}+\sqrt{u_{n-1}},\end{cases}\left(n\ge2,n\in N\right)}\)
Chứng minh dãy \(\left(u_n\right)\)có giới hạn hữu hạn. Tính giới hạn đó.
Cho dãy số thực \(\left(u_n\right)\) xác định bởi: \(\left\{{}\begin{matrix}u_1=1\\u_n=\dfrac{-1}{3+u_{n-1}},\forall n\ge2\end{matrix}\right.\)
Chứng minh rằng dãy số có giới han hữu hạn khi \(n\rightarrow+\infty\)
Số xấu thế nhỉ?
\(u_n=v_n+\dfrac{\sqrt{5}-3}{2}\)
\(\Rightarrow v_{n+1}+\dfrac{\sqrt{5}-3}{2}=-\dfrac{1}{3+v_n+\dfrac{\sqrt{5}-3}{2}}\)
\(\Rightarrow\left\{{}\begin{matrix}v_1=u_1-\dfrac{\sqrt{5}-3}{2}=\dfrac{5-\sqrt{5}}{2}\\v_{n+1}=\dfrac{\dfrac{3-\sqrt{5}}{2}v_n}{\dfrac{3+\sqrt{5}}{2}+v_n}\end{matrix}\right.\)
\(v_n=\dfrac{1}{y_n}\Rightarrow\dfrac{1}{y_{n+1}}=\dfrac{\dfrac{3-\sqrt{5}}{2}.\dfrac{1}{y_n}}{\dfrac{3+\sqrt{5}}{2}+\dfrac{1}{y_n}}\)
\(\Rightarrow\dfrac{1}{y_{n+1}}=\dfrac{3-\sqrt{5}}{2y_n\left(\dfrac{3+\sqrt{5}}{2}+\dfrac{1}{y_n}\right)}=\dfrac{3-\sqrt{5}}{\left(3+\sqrt{5}\right)y_n+2}\)
\(\Leftrightarrow y_{n+1}=\dfrac{\left(3+\sqrt{5}\right)y_n}{3-\sqrt{5}}+\dfrac{2}{3-\sqrt{5}}\)
\(\Rightarrow\left\{{}\begin{matrix}y_1=\dfrac{1}{v_1}=\dfrac{2}{5-\sqrt{5}}\\y_{n+1}=\dfrac{3+\sqrt{5}}{3-\sqrt{5}}y_n+\dfrac{2}{3-\sqrt{5}}\end{matrix}\right.\)
\(z_n=y_n+\dfrac{\sqrt{5}}{5}\Rightarrow\left\{{}\begin{matrix}z_1=y_1+\dfrac{\sqrt{5}}{5}=\dfrac{5+3\sqrt{5}}{10}\\z_{n+1}=\dfrac{3+\sqrt{5}}{3-\sqrt{5}}z_n\end{matrix}\right.\)
\(\Rightarrow z_n:csn-co:\left\{{}\begin{matrix}z_1=\dfrac{5+3\sqrt{5}}{10}\\q=\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\end{matrix}\right.\)
\(\Rightarrow z_{n+1}=\dfrac{5+3\sqrt{5}}{10}.\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n\)
\(\Rightarrow y_{n+1}=z_{n+1}-\dfrac{\sqrt{5}}{5}=\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}\)
\(v_{n+1}=\dfrac{1}{y_{n+1}}=\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}}\)
\(u_{n+1}=v_{n+1}+\dfrac{\sqrt{5}-3}{2}=\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}}+\dfrac{\sqrt{5}-3}{2}\)
Xét:
\(u_{n+2}-u_{n+1}=\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}.\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n.\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)-\dfrac{\sqrt{5}}{5}}+\dfrac{\sqrt{5}-2}{2}-\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}}-\dfrac{\sqrt{5}-2}{2}\)
\(=\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n.\dfrac{3+\sqrt{5}}{3-\sqrt{5}}-\dfrac{\sqrt{5}}{5}}-\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}}\)
\(=\dfrac{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n.\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)}{.....}\)
\(=\dfrac{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n\left(1-\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)}{....}=\dfrac{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n.\left(-\dfrac{5+3\sqrt{5}}{2}\right)}{...}< 0\)
\(\Rightarrow\) dãy giảm
\(\Rightarrow u_1>u_2>....>u_n\)
\(\Rightarrow\lim\limits u_n=1\)
Bn tham khảo đây nhé: https://diendantoanhoc.org/topic/140204-t%C3%A0i-li%E1%BB%87u-d%C3%A3y-s%E1%BB%91/
Cho dãy số (Un) được xác định như sau: \(u_1=2023\), \(u_{n-1}=n^2.\left(u_{n-1}-u_n\right)\), với mọi n thuộc N*, \(n\ge2\). Chứng minh rằng dãy số (Un) có giới hạn và tìm giới hạn đó
Cho dãy số (Un) được xác định như sau \(u_1=2023\), \(u_{n-1}=n^2.\left(u_{n-1}-u_n\right)\), với mọi n thuộc N*, \(n\ge2\) . Chứng minh rằng dãy số (Un) có giới hạn và tìm giới hạn đó
\(u_n=\dfrac{n+1}{2^{n+1}}\left(\dfrac{2}{1}+\dfrac{2^2}{2}+\dfrac{2^3}{3}+...+\dfrac{2^n}{n}\right)\).
Chứng minh \(\left(u_n\right)\) có giới hạn và tìm giới hạn đó.
Lời giải:
\(u_{n+1}=\frac{n+2}{2^{n+2}}\left(\frac{2}{1}+...+\frac{2^{n+1}}{n+1}\right)=\frac{n+2}{2^{n+1}}\left(\frac{2^{n+1}}{n+1}u_n+\frac{2^{n+1}}{n+1}\right)=\frac{n+2}{2n+2}(u_n+1)\)
Ta chứng minh $u_n\geq 1(*)$ với mọi $n=1,2,...$
Thật vậy:
$u_1=1; u_2=\frac{3}{2}>1$. Giả sử $(*)$ đúng đến $n=k$
$u_{k+1}=\frac{k+2}{2k+2}(u_k+1)>\frac{2(k+2)}{2k+2}>1$
Do đó $u_n\geq 1$ với mọi $n=1,2,...$
Tiếp theo ta chứng minh $u_n< 1+\frac{4}{n}(**)$ với mọi $n=1,2,...$
Thật vậy:
$u_1=1< 1+\frac{4}{1}$
$u_2=\frac{3}{2}< 1+\frac{4}{2};....;u_4=\frac{5}{3}<1+\frac{4}{4}$
....
Giả sử $(**)$ đúng đến $n=k\geq 5$. Khi đó:
\(u_{k+1}=\frac{k+2}{2k+2}(u_k+1)<\frac{k+2}{2k+2}(2+\frac{4}{k})=\frac{(k+2)^2}{k(k+1)}\)
\(\frac{(k+2)^2}{k(k+1)}-(1+\frac{4}{k+1})=\frac{(k+2)^2-k(k+5)}{k(k+1)}=\frac{4-k}{k(k+1)}<0\) với mọi $k\geq 5$
$\Rightarrow u_{k+1}< 1+\frac{4}{k+1}$. Phép quy nạp hoàn tất.
Do đó $(**)$ đúng
Từ $(*); (**)\Rightarrow 1\leq u_n\leq 1+\frac{4}{n}$ với mọi $n=1,2,...$
Mà $\lim (1+\frac{4}{n})=1$ khi $n\to +\infty$ nên $\lim u_n=1$
a,CMR :dãy u(n)=\(\left(1+\dfrac{1}{n}\right)^n\)có giới hạ hữu hạn
b đặt lim(1+\(\dfrac{1}{n}\))^n =e .Tính các giưới hạn sau ; lim\(\left(\dfrac{n+1}{n-1}\right)^{n+2}\)và lim\(\left(\dfrac{n-2}{n+3}\right)^{n+1}\)