x^2 - 2x+xy-2
phân tích thành nhâ n tử
x^3+2x^2+x-xy^2
phân tích đa thức trên thành nhân tử
\(=x\left(x^2+2x+1-y^2\right)=x\left[\left(x+1\right)^2-y^2\right]=x\left(x+y+1\right)\left(x-y+1\right)\)
Phân tích thành nhâ tử
a, \(-x^2-2x+15\)
b,\(2x^2-xy-y^2\)
c,\(16x^4+1\)
d, \(-6x^2-5y+3xy+10x\)
trình bày cách làm nữa nha
a) (-x+5)(x+3)
b) x2-y2+x2-xy
(x-y)(x+y)+x(x-y)
(x-y)(2x+y)
d) 10x-6x2-5y+3xy
2x(5-3x)-y(5-3x)
(2x-y)(5-3x)
thông cảm câu c hok bít làm câu a bạn nhân ra là bạn thấy
16x2 - ( x + 1)2
Phân tích đa thức thành nhân tử
\(=\left(4x-x-1\right)\left(4x+x+1\right)=\left(3x-1\right)\left(5x+1\right)\)
\(=\left(4x-x-1\right)\left(4x+x+1\right)=\left(3x-1\right)\left(5x+1\right)\)
a, x-3✔(x) +2
phân tích đa thức thành nhân tử
\(x-3\sqrt{x}+2=x-\sqrt{x}-2\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)
\(x-3\sqrt{x}+2=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
2x^3+16y^3
\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(x-3\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x-1\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(2x+1+x-3\right)^2\)
\(=\left(3x-2\right)^2\)
------------------------------------
\(a^3+3a^2-6a-8\)
\(=a^3+4a^2-a^2-4a-2a-8\)
\(=\left(a^3+4a^2\right)-\left(a^2+4a\right)-\left(2a+8\right)\)
\(=a^2\left(a+4\right)-a\left(a+4\right)-2\left(a+4\right)\)
\(=\left(a+4\right)\left(a^2-a-2\right)\)
\(=\left(a+4\right)\left(a^2-2a+a-2\right)\)
\(=\left(a+4\right)\left[\left(a^2-2a\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left[a\left(a-2\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left(a-2\right)\left(a+1\right)\)
---------------------------------
\(2x^2-5x+2\)
\(=2x^2-4x-x+2\)
\(=\left(2x^2-4x\right)-\left(x-2\right)\)
\(=2x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)
-----------------------------------------
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x-4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-2\right)\)
-------------------------------------
\(a^2-1+4b-4b^2\)
\(=a^2-\left(1-4b+4b^2\right)\)
\(=a^2-\left(1-2b\right)^2\)
\(=\left(a-1+2b\right)\left(a+1-2b\right)\)
----------------------------------------
\(a^4+6a^2b+9b^2-1\)
\(=\left(a^4+6a^2b+9b^2\right)-1\)
\(=\left(a^2+3b\right)^2-1\)
\(=\left(a^2+3b-1\right)\left(a^2+3b+1\right)\)
---------------------------------
\(2x^3+16y^3\)
\(=2\left(x^3+8y^3\right)\)
\(=2\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Lần sau ghi đề tách riêng từng câu ra nhé em. Ghi dính chùm vậy khó nhìn lắm. Sẽ ít ai giải cho em
phân tích đa thức thành nhâ tử (x+2y)^2-(x-y)^2
(x + 2y)² - (x - y)²
= (x + 2y - x + y)(x + 2y + x - y)
= 3y(2x + y)
\(\left(x+2y\right)^2-\left(x-y\right)^2\)
\(=\left[\left(x+2y\right)-\left(x-y\right)\right]\left[\left(x+2y\right)+\left(x-y\right)\right]\)
\(=\left(x+2y-x+y\right)\left(x+2y+x-y\right)\)
\(=3y\left(2x+y\right)\)
a)x^2+5x+6
b5x^2+5xy-x-y
c,7x-6x^2-2
phân tích thành nhân tử bằng 4 cách khác nhau
a: =x^2+2x+3x+6
=(x+2)(x+3)
b: =5x(x+y)-(x+y)
=(x+y)(5x-1)
c: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
phân tích thành nhâ tử
a, mz-yz-x2+2xy-y2
b, x2-2x-4y2-4y
b) x2 - 2x - 4y2 - 4y
= x2 - 2x + 1 - 4y2 - 4y - 1
= ( x - 1 )2 - [ ( 2y )2 + 2.2.y + 1 ]
= ( x - 1 )2 - ( 2y + 1 )2
= ( x - 1 + 2y + 1 ).( x - 1 - 2y - 1 )
= ( x + 2y ).( x - 2y - 2 )
Bài làm
a) xz - yz - x2 + 2xy - y2
= ( xz - yz ) - ( x2 - 2xy + y2 )
= z( x - y ) - ( x - y )2
= ( x - y )( z - x + y )
b) x2 - 2x - 4y2 - 4y
= x2 - 2x - 4y2 - 4y + 1 - 1
= ( x2 - 2x + 1 ) - ( 4y2 + 4y + 1 )
= ( x - 1 )2 - ( 2y + 1 )2
= ( x - 1 - 2y - 1 )( x - 1 + 2y + 1 )
= ( x - 2y - 2 )( x + 2y )
# Học tốt #
Bài 1: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 1, 2
1) x3 – 2x – x 2) 6x2 + 12xy + 6y2
3) 2y3 + 8y3 + 8y 4) 5x2 – 10xy + 5y2
Bài 2: Phân tích các đa thức sau thành nhân tử
HD: Dùng pp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 3, 6, 7
1) x3 – 64x 2) 8x2y – 18y 3) 24x3 – 3
Bài 3: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp nhóm hạng tử phối hợp dùng hằng đẳng thức
1) 5x2 + 10x + 5 – 5y2 2) 3x3 – 6x2 + 3x – 12xy2
3) a3b – ab3 + a2 + 2ab + b2 4) 2x3 – 2xy2 – 8x2 + 8xy
Giup mik với mik cần gấp lắm!
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
Bài 1;
1) \(x^3-2x-x=x\left(x^2-2x-1\right)\)
2) \(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)
3) \(2y^3+8y^3+8y=10y^3+8y=2y\left(5y^2+4\right)\)
4) \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
1) \(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)
2) \(8x^2y-18y=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\)
3) \(24x^3-3=3\left(8x^3-1\right)=3\left(2x-1\right)\left(4x^2+2x+1\right)\)
Bài 3:
1) \(5x^2+10x+5-5y^2=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y\right]=5\left(x-y+1\right)\left(x+y+1\right)\)
2) \(3x^3-6x^2+3x-12xy^2=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=3x\left(x-2y-1\right)\left(x+2y-1\right)\)
3) \(a^3b-ab^3+a^2+2ab+b^2=ab\left(a^2-b^2\right)+\left(a+b\right)^2=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)
4) \(2x^3-2xy^2-8x^2+8xy=2x\left(x^2-y^2-4x+4y\right)=2x\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]=2x\left(x-y\right)\left(x+y-4\right)\)