Cho các biểu thức
A=3x+15/x2+10x+25 với x#5 và B=x/x+3-2x/3-x-3x2+9/x2-9 với x#3 , x#-3
a) rút gọn biểu thức A . Tính giá trị của A khi x=10
b)rút gọn biểu thức B
c)đặt P=A/B . Tìm x nguyên để P nguyên
Câu 14: (2,0 điểm) Phân tích đa thức sau thành nhân tử a) c) x2 + 25 – 10xd ) x3 – 8y3 Câu 15: (1,0 điểm) Tìm x, biết a) 3x.(x-1) + x-1=0 b) x2 - 6x = 0 Câu 16: (2,0 điểm) Cho tam giác vuông ABC vuông ở A có đường cao AH. Gọi E ,F lần lượt là hình chiếu của H lên AB và AC. a. So sánh AH và EF b. Tính độ dài HF biết AB = 6 cm, BC = 10 cm và BH = 3,6 cm. Câu 17: (1,0 điểm) Cho hình thang ABCD (AB// CD) có O là giao điểm 2 đường chéo. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại E và H. Chứng minh OE= OH.
Câu 17:
Xét ΔADC có OE//DC
nên \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét ΔBDC có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}\left(2\right)\)
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)
=>OE=OH
Câu 15:
a: \(3x\left(x-1\right)+x-1=0\)
=>\(3x\left(x-1\right)+\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(3x+1\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b: \(x^2-6x=0\)
=>\(x\cdot x-x\cdot6=0\)
=>x(x-6)=0
=>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Quy đồng mẫu các phân thức sau
a, 3x/2y2x và -y/6y2x
b, x+4/x2+x và x-3/x+1
c, x/x2-25 và x+2/x2-10x+25
d, x/x3-8 và 3x/x2-4+4 và 1/x2+2x+4
Rút gọn biểu thức x 2 + 10 x + 25 - 5 - x với x < -5 ta được:
A. −1
B. 1
C. 2
D. −2
Với x = 105 thì giá trị của biểu thức x 2 - 10 x + 25 là:
A. 1000
B. 1025
C. 10000
D. 10025
câu 2: bậc của đa thức M=x8+x2y7-y5+x là?
A.1 B.5 C.8 D.9
c6: biết x3+125=A.B và A là đa thức có bậc =1 . Khi đó biểu thức B là?
A. x2-5x+25 B.x2+5x+25 C.x2-10x+25 D. x2+10x+25
2D
6
\(x^3+125=\left(x+5\right)\left(x^2-5x+25\right)\)
A là đa thức bậc 1
=>A=x+5
=>B=x^2-5x+25
=>Chọn A
Câu 2. M có bậc 2 + 7 = 9
Chọn D
Câu 6. x³ + 125 = x³ + 5³ = (x + 5)(x² - 5x + 25)
Chọn A
Bài 3: Phân tích các đa thức sau thành nhân tử:
a) x2 + 10x + 25. b) 8x - 16 - x2
c) x3 + 3x2 + 3x + 1 d) (x + y)2 - 9x2
e) (x + 5)2 – (2x -1)2
Bài 4: Tìm x biết
a) x2 – 9 = 0 b) (x – 4)2 – 36 = 0
c) x2 – 10x = -25 d) x2 + 5x + 6 = 0
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
Tính giá trị của phân thức:
a) x 2 − 1 2 x 2 − 3 x + 1 với x ≠ 1 và x ≠ 1 2 tại 2 x + 1 = 3 ;
b) 3 x 2 − 10 x + 3 x 2 − 4 x + 3 với x ≠ 2 ; x ≠ 3 tại x 2 − 8 x + 15 = 0 .
Cho biểu thức : \(A=\frac{x^2-10x+25}{3x^2-75}\)
a.Thu gọn biểu thức A
b. Tính giác trị của biểu thức A với x = \(-\frac{3}{5}\)
a, \(A=\frac{x^2-10x+25}{3x^2-75}=\frac{\left(x-5\right)^2}{3\left(x^2-25\right)}=\frac{\left(x-5\right)^2}{3\left(x-5\right)\left(x+5\right)}=\frac{x-5}{3\left(x+5\right)}\)
b, Ta có x = -3/5
\(\frac{-\frac{3}{5}-5}{3\left(-\frac{3}{5}+5\right)}=\frac{-\frac{28}{5}}{3.\frac{22}{5}}=\frac{-\frac{28}{5}}{\frac{66}{5}}=-\frac{14}{825}\)
\(A=\frac{x^2-10x+25}{3x^2-75}\)
\(A=\frac{\left(x-5\right)^2}{3\left(x^2-25\right)}=\frac{\left(x-5\right)^2}{3\left(x-5\right)\left(x+5\right)}\)
\(A=\frac{x-5}{3\left(x+5\right)}\)
a)Tìm giá trị nhỏ nhất của các biểu thức sau:
A = 25x2 - 10x + 11
B = (x - 3)2 + (11 - x)2
C = (x + 1)(x - 2)(x - 3)(x - 6)
b) Tìm giá trị lớn nhất của các các biểu thức sau:
D = 10x - 25x2 - 11
E = 19 - 6x - 9 x2
F = 2x - x2
c) Cho x và y thỏa mãn: x2 + 2xy + 6x + 2y2 + 8 = 0
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B = x + y + 2024
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1