tìm tất cả các cặp số (x, y) thoả mãn 3(x+y) =xy
Tìm tất cả các cặp số nguyên (x;y) biết x, y thoả mãn |xy|+|x-y|=1. Giải thích?
Tìm tất cả các cặp số nguyên x,y thoả mãn: 2x2 + 5y2 - 4(xy+1) = 7
Sử dụng phương pháp Delta cho bài toán này:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2x^2-4xy+\left(5y^2-11\right)=0\left(1\right)\)
Xét phương trình (1) là phương trình bậc 2 ẩn x có tham số là y.
Ta có: \(\Delta'=\left(\dfrac{-4y}{2}\right)^2-2\left(5y^2-11\right)=-6y^2+22\ge0\)
\(\Rightarrow-\sqrt{\dfrac{22}{6}}\le y\le\sqrt{\dfrac{22}{6}}\) hay \(-1\le y\le1\)(vì y nguyên).
Với y=-1 , ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Với \(y=1\), ta có: \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Vậy....
Ngoài phương pháp này, ta cũng có thể sử dụng 1 phương pháp khác, đó là phương pháp kẹp:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2\left(x-y\right)^2+3y^2=11\)
\(\Rightarrow3y^2\le11\Rightarrow-1\le y\le1\) (do y là số nguyên)
Đến đây ta xét các trường hợp:
Với \(y=1\), ta có \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Với \(y=-1\), ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Vậy...
Tìm tất cả các cặp số nguyên không âm thoả mãn: x-y=x2+xy+y2
Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)
Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)
Mà y là số nguyên không âm nên y = 0
Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy (x, y) = { (0; 0); (1; 0) }
Tìm tất cả các cặp số nguyên dương (x;y) thoả mãn
2x^2-xy-x-2y+1=0
tìm tất cả các cặp số (x;y) thoả mãn 1/x+1/y=1/5
Quy đồng lên ta có: 5y + 5x = xy
\(\Rightarrow x\left(5-y\right)=-5y\)
\(\Rightarrow x=\frac{-5y}{5-y}\)
\(\Rightarrow x=\frac{-5y}{5-y}-5+5\)
\(\Rightarrow x=\frac{-5y-5.\left(5-y\right)}{5-y}+5\)
\(\Rightarrow x=\frac{-25}{5-y}+5\)
Để x nguyên thì -25/5-y nguyên \(\Leftrightarrow\left(5-y\right)\in\text{Ư}\left(-25\right)\)
\(\Leftrightarrow5-y\in\left\{-25;-5;-1;1;5;25\right\}\)
\(\Leftrightarrow y\in\left\{30;10;6;4;0;-20\right\}\)
Vì y là mẫu số nên y khác 0 nên y \(\in\text{ }\left\{30;10;6;4;-20\right\}\)
Nếu y = 30 thì x = 6
y = 10 thì x = 10
y = 6 thì x = 30
y = 4 thì x = -20
y = -20 thì x = 4
Vậy có 5 cặp số nguyên (x;y) thỏa mãn
Chúc bạn học tốt !!!
1/x+1/y=1/5 Suy ra 1/x<1/5 suy ra x>5 Do vai tro cua x, y binh dang nen gia su x<y suy ra 1/x>1/y. Ta co: 1/x+1/x>1/x+1/y hay 2/x>1/5=2/10 suy ra x<10 suy ra x thuoc {6;7;8;9}; thu voi tung gia tri cua x la ra.
Tìm tất cả các cặp số \(\left(x,y\right)\) thoả mãn: \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}\le0\)
(2x-y+7)^2022>=0 với mọi x,y
|x-3|^2023>=0 với mọi x,y
Do đó: (2x-y+7)^2022+|x-3|^2023>=0 với mọi x,y
mà \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}< =0\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}=0\)
=>2x-y+7=0 và x-3=0
=>x=3 và y=2x+7=2*3+7=13
Tìm tất cả các số nguyên dương x,y thoả mãn: 9/xy-1/y=2+3/x
Dấu / là biểu thị phân số
\(\dfrac{2+3}{x}hay2+\dfrac{3}{x}\) vậy
Tìm tất cả các cặp số nguyên (x,y) thoả mãn (x-1)2 +5y2 =6
tìm tất cả các cặp số thực (x;y) sao cho y là số nhỏ nhất thoả mãn điều kiện \(x^2+5y^2+2y+4xy-3=0\)
\(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\)\((x^2+4xy+4y^2)+(y^2+2y+1)=4\)
\(\Leftrightarrow\)\((x+2y)^2+(y+1)^2=4\)
\(\Leftrightarrow\)\((x+2y)^2=4-(y+1)^2\)
\(\Leftrightarrow\)\((x+2y)^2=(2-y-1)(2+y+1)\)
\(\Leftrightarrow\)\((x+2y)^2=(1-y)(3+y)\)
\(Vì \) \((x+2y)^2\geq0\)
\(\Rightarrow\)\((1-y)(3+y)\geq0\)
\(\Rightarrow\)\(\left[\begin{array}{}
\begin{cases}
1-y\geq0\\
3+y\geq0
\end{cases}\\
\begin{cases}
1-y\leq0\\
3+y\leq0
\end{cases}
\end{array} \right.\)
\(\Rightarrow\)\(\left[\begin{array}{}
\begin{cases}
y\leq1\\
y\geq-3
\end{cases}\\
\begin{cases}
y\geq1\text{(Vô lí)}\\
y\leq-3\text{(Vô lí)}
\end{cases}
\end{array} \right.\)
\(\Rightarrow\)\(-3\leq y\leq1\)
\(\text{Mà y là số nhỏ nhất}\)
\(\Rightarrow\)\(y=-3\)
\(\Rightarrow\)\(x+2.(-3)=0\text{ (Vì }(x+2y)^2\geq0)\)
\(\Rightarrow\)\(x=6\)
\(\text{Vậy cặp số (x,y) thỏa mãn yêu cầu bài toán là: (6;-3)}\)
Nếu mình đúng cho mình xin 1 like nha
Tìm tất cả các cặp số nguyên (x;y) thoả mãn: x^2 + 5y^2 + 4xy = 2023