1/ cho dãy số un =5n-2
a/ Tính u15+u16+...+uu40
b/ Tính u2+u4+...+uu30
Cho dãy số :
U0 = 1 ; U1 = 2
Un + 2 = 2Un + Un + 1
a ) Tính : U2 + U 3 + U4 + U5
b ) Tính : U10
Cho dãy số u n với u n = 3 n 2 + 1 . Tính tổng S = u 2 + u 4 + u 6 + . . . + u 20
A. 4 , 5 . 3 10
B. 4 , 5 . 3 10 - 1
C. 3 3 3 10 - 1
D. 3 3 . 3 10
Cho dãy số u n với u n = 3 n 2 + 1 . Tính tổng S = u 2 + u 4 + u 6 + . . . + u 20
A. S = 9 2 3 20 + 1
B. S = 9 2 3 20 - 1
C. S = 9 2 3 10 - 1
D. S = 7 2 3 10 - 1
Cho dãy số (un) với u n = 3 n 2 + 1 .Tính tổng S = u 2 + u 4 + u 6 + … + u 20
A. S = 9 2 ( 3 20 + 1 )
B. S = 9 2 ( 3 20 − 1 )
C. S = 9 2 ( 3 10 − 1 )
D. S = 7 2 ( 3 10 − 1 )
Chọn C
Ta có u 2 ; u 4 ; u 6 ; … ; u 20 lập thành cấp số nhân số hạng đầu u 2 = 9 ; q = 3 và có 10 số hạng nên
S = u 2 . 1 − 3 10 1 − 3 = 9. 3 10 − 1 2 = 9 2 ( 3 10 − 1 )
Cho cấp số cộng u n biết u 2 = 3 và u 4 = 7. Gía trị của u 15 bằng
A. 27
B. 31
C. 35
D. 29
Cho cấp số cộng: u1; u2; u3;… có công sai d.Biết u4 + u8 + u12 + u16 = 224. Tính S19.
A. 1290
B. 1604.
C. 1064
D. 1406
Chọn C.
Có: u4 + u8 + u12 + u16 = 224 ⇔ u1 + 3d + u1 + 7d + u1 + 15d = 224
⇔ 4 u1 + 36d = 224 ⇔ u1 + 9d = 56
Ta có: S19 = 19/2. (2 u1 + 18d) = 19(u1 + 9d) = 19.56 = 1064
Cho cấp số cộng (un); công sai d. Biết u1 + u4 + u7 + u10 + u13 + u16 = 147. Tính u1 + u6 + u11 + u16
A. 49
B. 98
C. 196
D. tất cả sai
Chọn B.
Ta có : u1 + u4 + u7 + u10 + u13 + u16 = 147
⇔ u1 + u1 + 3d + u1 + 6d + u1 + 9d + u1 + + 12d + u1 + 15d = 147
⇔ 6 u1 + 45d = 147 ⇔ 2 u1 + 15d = 49
Ta có: u6 + u11 = u1 + 5d + u1 + 10d = 2u1 + 15d = 49
Ta có: u1 + u6 + u11 + u16 = u1 + u1 + 5d + u1 + 10d + u1 + 15d = 4u1 + 30d
= 2(2u1 + 15d) = 2.49 = 98.
Cho dãy số (Un) xác định bởi:\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=-\dfrac{3}{2}u_n^2+\dfrac{5}{2}u_n+1\end{matrix}\right.\), \(\forall n\ge1\)
1) Hãy tính u2.u3,u4,u5
2) Dự đoán công thức của số hạng tổng quát Un
1) cho dãy số được xác định bởi
a) Tính
2) cho dãy số được xác định bởi
b) \(\dfrac{13}{7}\) là số hạng thứ mấy của dãy
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
Cho cấp số cộng (un); công sai d. Biết u4 + u8 + u12 + u16 = 224. Tính: S19
A. 1064
B. 448
C. 896
D. 1200
Chọn A.
Ta có: u4 + u8 + u12 + u16 = 224 ó u1 + 3d + u1 + 7d + u1 + 15d = 224
⇔ 4 u1 + 36d = 224 ⇔ u1 + 9d = 56
Ta có: S19 = (19/2).(2 u1 + 18d) = 19(u1 + 9d) = 19.56 = 1064