(2020\(x^2\)+2021)(\(x^2\)-1)(2x+1)=0
giải phương trình :\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
Đk: \(\forall x\in R\)
Ta có:\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=\sqrt{1+2020^2+2.2020+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(1+2020\right)^2+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\frac{2021^2-2020}{2021}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=2021\)
Lập bảng xét dầu
x -2 1
x - 1 - | - 0 +
x + 2 - 0 + | -
Xét các TH xảy ra :
TH1: x \(\le\)-2 => pt trở thành: 1 - x - x - 2 = 2021
<=> -2x = 2022 <=> x = -1011 (tm)
TH2: \(-2< x\le1\) => pt trở thành: 1 - x + x + 2 = 2021
<=> 0x = 2018 (vô lí) => pt vô nghiệm
TH3: \(x>1\) => pt trở thành: x - 1 + x + 2 = 2021
<=> 2x = 2020 <=> x = 1010 (tm)
Vậy S = {-1011; 1010}
a)2x+1/2 = 4y-5/9 = 2x+4y-4 /2020x
b)(7y - x)2020 + | 5 - 11x|2021= 0
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-7y=0\\11x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{11}\\y=\dfrac{x}{7}=\dfrac{5}{77}\end{matrix}\right.\)
a)2x+1/2 = 4y-5/9 = 2x+4y-4 /2020x
b)(7y - x)2020 + | 5 - 11x|2021= 0
Lời giải:
a. Bạn cần viết đề bằng công thức toán để đề được rõ ràng hơn.
b. Ta có:
$(7y-x)^{2020}\geq 0$ với mọi $x,y$
$|5-11x|^{2021}\geq 0$ với mọi $x,y$
Do đó để tổng của chúng bằng $0$ thì:
$(7y-x)^{2020}=|5-11x|^{2021}=0$
$\Leftrightarrow x=\frac{5}{11}; y=\frac{5}{77}$
a, \(\left(2x-1\right)\left(x+\dfrac{2}{3}\right)=0\)
b, \(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
a)
`(2x-1)(x+2/3)=0`
\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b)
\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)
\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)
\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)
\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)
a) + Chia thành 2 trường hợp
- 2x - 1 = 0
2x = 0 + 1
2x = 1
x = 1 : 2
x = 0,5
- x + 2/3 = 0
x = 0 - 2/3
x = -2/3
vậy x = { 0,5 ; -2/3 }
Giải phương trình
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
Giải phương trình:
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)
Bài1:(1,5 điểm)Giải các phương trình sau
a)3(2x-3)=5x+1
b)x+1/2021+x+2/2020+x+3/2019+x+2028/2=0
a) \(3\left(2x-x\right)=5x+1\)
\(\Leftrightarrow6x-3x=5x+1\)
\(\Leftrightarrow6x-3x-5x=1\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\dfrac{1}{-2}=-\dfrac{1}{2}\)
b) \(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}+\dfrac{x+3}{2019}+\dfrac{x+4}{2018}=0\)
\(\Leftrightarrow\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)
\(\Leftrightarrow\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)
\(\Leftrightarrow\left(x+2022\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}\right)\)
\(\Leftrightarrow x+2022=0\)
\(\Leftrightarrow x=-2022\)
a)3(2x-3)=5x+1
⇔6x-9=5x+1
⇔6x-5x=1+9
⇔x=10
vậy phương trình có nghiệm là S={10}
b)\(\dfrac{x+1}{2021}\)+\(\dfrac{x+2}{2020}\)+\(\dfrac{x+3}{2019}\)+\(\dfrac{x+2028}{2}\)=0
⇔2020(x+1)+2021(x+2)+2041210(x+2028)=0
⇔2045251x+4139579942=0
⇔2045251x=-4139579942=0
⇔x=-\(\dfrac{4139579942}{2045251}\)
vậy phương trình có tập nghiệm là S={\(-\dfrac{4139579942}{2045251}\)}
Rút gọn:
a) A=(5-2x)2-4x(x-5)
b) B= (4-3x)(4+3x)+(3x+1)2
c) C= (x+1)3-x(x2+3x+3)
d) D=(2021x-2020)2-2(2021x-2020)(2020x-2021)+(2020x-2021)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)