Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Witch Rose
Xem chi tiết
alibaba nguyễn
30 tháng 1 2019 lúc 9:02

2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)

\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)

\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)

alibaba nguyễn
30 tháng 1 2019 lúc 9:12

3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)

Dễ thấy

 \(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)

Từ phương trình đầu ta có:

\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)

\(\Leftrightarrow y\le1\)

Vậy \(x=y=1\)

alibaba nguyễn
30 tháng 1 2019 lúc 9:14

Thôi giúp 2 bài thôi còn bài còn lại tự làm cho lớn :D

Nguyễn Tú Anh
Xem chi tiết
Akai Haruma
30 tháng 7 2018 lúc 19:17

Lời giải:

Có: \(x^4+y^4+z^2+1\geq 2x(xy^2-x+z+1)\)

\(\Leftrightarrow x^4+y^4+z^2+1-2x^2y^2+2x^2-2xz-2x\geq 0\)

\(\Leftrightarrow (x^4+y^4-2x^2y^2)+(z^2+x^2-2xz)+(x^2+1-2x)\geq 0\)

\(\Leftrightarrow (x^2-y^2)^2+(z-x)^2+(x-1)^2\geq 0\)

Điều trên luôn đúng do \((x^2-y^2)^2\geq 0; (z-x)^2\geq 0; (x-1)^2\geq 0\)

Ta có đpcm

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x^2-y^2=0\\ z-x=0\\ x-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ z=1\\ y=\pm 1\end{matrix}\right.\)

Lê Thị Thu Hà
Xem chi tiết
Rồng Đom Đóm
19 tháng 10 2018 lúc 21:16

\(4x^2+y^2+z^2+t^2\ge2x\left(y+z+t\right)\)

\(\Leftrightarrow4x^2+y^2+z^2+t^2-2xy-2xz-2xt\ge0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+\left(x^2-2xt+t^2\right)+x^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(x-t\right)^2+x^2\ge0\)(đúng)

=>đpcm

"="<=>x=y=z=t=0

Lê Thị Thu Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2022 lúc 15:05

\(\Leftrightarrow4x^2+y^2+z^2+t^2-2xy+2xz-2xt>=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2xz+z^2\right)+\left(x^2-2xt+t^2\right)+x^2>=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x+z\right)^2+\left(x-t\right)^2+x^2>=0\)(luôn đúng)

lipphangphangxi nguyen k...
Xem chi tiết
Dương
Xem chi tiết
Lê Duy Khương
12 tháng 3 2021 lúc 22:41

1)

   +)  Ta có

            \(\left(a-b\right)^2\ge0\)

       \(\Leftrightarrow a^2+b^2-2ab\ge0\)

        \(\Leftrightarrow a^2+b^2\ge2ab\)

        \(\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)

        \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

        \(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)  ( đpcm )

     + )   Theo phần trên

             \(a^2+b^2\ge2ab\)

           \(\Leftrightarrow a^2+b^2+2ab\ge4ab\)

           \(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

            \(\Leftrightarrow ab\le\frac{1}{4}\left(a+b\right)^2\)  ( đpcm )

                

Khách vãng lai đã xóa
Kiệt Nguyễn
13 tháng 3 2021 lúc 7:45

2, 

Ta có: \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0\Leftrightarrow5x^2-9x\left(y+z\right)+5\left(y+z\right)^2=28yz\le7\left(y+z\right)^2\)\(\Leftrightarrow5x^2-9x\left(y+z\right)-2\left(y+z\right)^2\le0\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-9.\frac{x}{y+z}-2\le0\)\(\Leftrightarrow\left(5.\frac{x}{y+z}+1\right)\left(\frac{x}{y+z}-2\right)\le0\Leftrightarrow\frac{x}{y+z}\le2\)(Do \(5.\frac{x}{y+z}+1>0\forall x,y,z>0\))

\(\Rightarrow E=\frac{2x-y-z}{y+z}=2.\frac{x}{y+z}-1\le2.2-1=3\)

Đẳng thức xảy ra khi \(y=z=\frac{x}{4}\)

Khách vãng lai đã xóa
hoàng hà diệp
Xem chi tiết
alibaba nguyễn
11 tháng 3 2019 lúc 9:02

\(P=\frac{3\left(x^3+y^3+z^3\right)}{4\left(xy+yz+zx\right)}+\frac{1}{\left(x+y+z\right)^2}\ge\frac{\left(x+y+z\right)\left(xy+yz+zx\right)}{4\left(xy+yz+zx\right)}+\frac{1}{\left(x+y+z\right)^2}\)

\(=\frac{x+y+z}{4}+\frac{1}{\left(x+y+z\right)^2}\)

Đặt \(x+y+z=a\) thì cần chứng minh

\(\frac{a}{4}+\frac{1}{a^2}\ge\frac{3}{4}\)

\(\Leftrightarrow\left(a-2\right)^2\left(a+1\right)\ge0\)(đúng)

Nguyễn Thiều Công Thành
Xem chi tiết
Tuyển Trần Thị
4 tháng 11 2017 lúc 13:06

vì x+y+z=1nên

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)

nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)

\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)

dau = xay ra khi x=y=z=1/3

Cris devil gamer
Xem chi tiết