\(x^2-6x-2+\frac{14}{x^2-6x+7}\)=0
tìm x
Giải phương trình sau:
a) \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)
b) \(\frac{1}{2-x}+1=\frac{1}{x+2}-\frac{6-x}{3x^2-12}\)
c) \(\frac{x-2}{x+2}+\frac{3}{2-x}=\frac{2\left(x-11\right)}{x^2-4}\)
d) \(x^2-6x-2+\frac{14}{x^2-6x+7}=0\)
a) ĐKXĐ: $x\neq 1$
PT \(\Leftrightarrow \frac{x^2+x+1+2(x-1)}{(x-1)(x^2+x+1)}=\frac{3x^2}{x^3-1}\)
\(\Leftrightarrow \frac{x^2+3x-1}{x^3-1}=\frac{3x^2}{x^3-1}\)
\(\Rightarrow x^2+3x-1=3x^2\Leftrightarrow 2x^2-3x+1=0\)
\(\Leftrightarrow (x-1)(2x-1)=0\)
Mà $x\neq 1$ nên $2x-1=0\Rightarrow x=\frac{1}{2}$ là nghiệm
b) ĐK: $x\neq \pm 2$
PT \(\Leftrightarrow \frac{3-x}{2-x}=\frac{1}{x+2}-\frac{6-x}{3x^2-12}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{3-x}{2-x}=\frac{6-x}{3(x^2-4)}\)
\(\Leftrightarrow \frac{1}{x+2}+\frac{3-x}{x-2}=\frac{6-x}{3(x-2)(x+2)}\)
\(\Leftrightarrow \frac{-x^2+2x+4}{(x-2)(x+2)}=\frac{6-x}{3(x-2)(x+2)}\)
\(\Rightarrow 3(-x^2+2x+4)=6-x\)
\(\Leftrightarrow -3x^2+7x+6=0\)
\(\Leftrightarrow (x-3)(3x+2)=0\Rightarrow x=3\) hoặc $x=-\frac{2}{3}$
Vậy........
c) ĐK: $x\neq \pm 2$
PT \(\Leftrightarrow \frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2(x-11)}{x^2-4}\)
\(\Leftrightarrow \frac{(x-2)^2-3(x+2)}{(x+2)(x-2)}=\frac{2(x-11)}{(x-2)(x+2)}\)
\(\Leftrightarrow \frac{x^2-7x-2}{(x-2)(x+2)}=\frac{2x-22}{(x-2)(x+2)}\)
\(\Rightarrow x^2-7x-2=2x-22\)
\(\Leftrightarrow x^2-9x+20=0\Leftrightarrow (x-4)(x-5)=0\Rightarrow x=4\) hoặc $x=5$
(đều thỏa mãn)
d) ĐK: \(x^2-6x+7\neq 0\)
PT \(\Leftrightarrow (x^2-6x+7)+\frac{14}{x^2-6x+7}-9=0\)
\(\Rightarrow (x^2-6x+7)^2-9(x^2-6x+7)+14=0\)
\(\Leftrightarrow (x^2-6x+7-2)(x^2-6x+7-7)=0\)
\(\Leftrightarrow (x^2-6x+5)(x^2-6x)=0\)
\(\Leftrightarrow (x-1)(x-5)x(x-6)=0\)
\(\Rightarrow x\in \left\{1;5;0;6\right\}\) (đều thỏa mãn)
Vậy.........
TÌM X BIẾT \(\frac{X-1}{X^2-9X+20}+\frac{2X-2}{X^2-6X+8}+\frac{3X-3}{X^2-X-2}+\frac{4X-4}{X^2+6X+5}=0\)
\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)
\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
PS: Điều kiện xác đinh bạn tự làm nhé
Tìm x:
\(\frac{2x-3}{\left(7-6x\right)^2}+\frac{x-2}{\left(7-6x\right)^2}=\frac{6x-3}{\left(3x-5\right)^2}-\frac{12x-10}{\left(3x-5\right)^2}\)
\(\frac{2x-3}{\left(7-6x\right)^2}+\frac{x-2}{\left(7-6x\right)^2}=\frac{6x-3}{\left(3x-5\right)^2}-\frac{12x-10}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\frac{2x-3+x-2}{\left(7-6x\right)^2}=\frac{6x-3-12x+10}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\frac{3x-5}{\left(7-6x\right)^2}=\frac{7-6x}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\left(7-6x\right)^3=\left(3x-5\right)^3\)
\(\Leftrightarrow7-6x=3x-5\)
\(\Leftrightarrow7+5=3x+6x\)
\(\Leftrightarrow12=9x\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)
Tìm x
a, x\(^2\)-6x=-9
b, 2(x+3)-x\(^2\)+3x=0
c, x\(^3\)-6x\(^2\)+12x-7=0
a. x2 - 6x = -9
<=> x2 - 6x + 9 = 0
<=> (x - 3)2 = 0
<=> x - 3 = 0
<=> x = 3
b. 2(x + 3) - x2 + 3x = 0
<=> 2(x + 3) - x(x + 3) = 0
<=> (2 - x)(x + 3) = 0
<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
tìm x biết
a, x(2x-7)-4x+14=0
b, x(x-1)+2x-2=0
c, 2x^3+3x^2+2x+3=0
d, x^3+6x^2+11x+6=0
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3tìm x biết
a, x(2x-7)-4x+14=0
b, x(x-1)+2x-2=0
c, 2x^3+3x^2+2x+3=0
d, x^3+6x^2+11x+6=0
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
tau cung bui ma chu mi giup tao roi cam on nhe
Tìm x:
a) x^2-4x-7=0
b) x^2-x-11=0
c) 2x^4-6x^3+x^2+6x-3=0
a) \(x^2-4x-7=0\)
Ta có: \(\Delta=4^2+4.28=128,\sqrt{\Delta}=\sqrt{128}\)
pt có 2 nghiệm:
\(x_1=\frac{4+\sqrt{128}}{2}\);\(x_2=\frac{4-\sqrt{128}}{2}\)
b) \(x^2-x-11=0\)
Ta có: \(\Delta=1^2+4.11=45,\sqrt{\Delta}=\sqrt{45}\)
pt có 2 nghiệm:
\(x_1=\frac{1+\sqrt{45}}{2}\)\(x_2=\frac{1-\sqrt{45}}{2}\)
Tìm x
2x-7+(x-14)=0
x^2-6x=0
(x-3)(16-4x)=0
(x-3)-(16-4x)=0
(x-3)+(16-4x)=0
Mấy câu này khá giống nhau nhé anh (câu 1 giống câu 4 và 5, cấu 2 giống câu 3) =)))
Câu 1: 2x - 7 + (x - 14) = 0
<=> 3x -21 = 0
<=> 3x = 21 => x = 7
Câu 2:
x2 - 6x = 0 <=> x.(x - 6) = 0 => \(\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
Chúc anh học tốt !!!
Câu 1, 2 có người làm rồi nên mik làm tiếp cho mấy câu tiếp. Cứ áp dụng A.B = 0 => A = 0 hoặc B = 0
3; ( x - 3 )( 16 - 4x ) = 0
=> x - 3 = 0 hoặc 16 - 4x = 0
=> x = 3 hoặc x = 4
Vậy x = 3 hoặc x = 4.
4; ( x - 3 ) - ( 16 - 4x ) = 0
=> x - 3 - 16 + 4x = 0
=> ( x + 4x ) - ( 3 + 16 ) = 0
=> 5x - 19 = 0
=> x = 19/5
Vậy x = 19/5
5; ( x + 3 ) + ( 16 - 4x ) = 0
=> x + 3 + 16 - 4x = 0
=> ( x - 4x ) + ( 16 + 3 ) = 0
=> 3x + 19 = 0
=> x = 19/3
Vậy x = 19/3
bài 49; tìm x;
1, 3x ( x - 7) 2x - 14 = 0
2, x mũ 3 + 3x mũ 2 - ( x + 3) = 0
3, 15x - 5 + 6x mũ 2 - 2x = 0
4, 5x - 2 - 25x mũ 2 + 10x = 0
1, \(3x\left(x-7\right)+2x-14=0\)
\(\Rightarrow3x\left(x-7\right)+2\left(x-7\right)=0\)
\(\Rightarrow\left(x-7\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=\frac{-2}{3}\end{cases}}\)
2, \(x^3+3x^2-\left(x+3\right)=0\)
\(\Rightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm1\end{cases}}\)
3, \(15x-5+6x^2-2x=0\)
\(\Rightarrow\left(15x-5\right)+\left(6x^2-2x\right)=0\)
\(\Rightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(5+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{-5}{2}\end{cases}}\)
4, \(5x-2-25x^2+10x=0\)
\(\Rightarrow\left(5x-25x^2\right)-\left(2-10x\right)=0\)
\(\Rightarrow5x\left(1-5x\right)-2\left(1-5x\right)=0\)
\(\Rightarrow\left(1-5x\right)\left(5x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}1-5x=0\\5x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{2}{5}\end{cases}}\)