Giải phương trình:
(x + 2)4 + (x + 4)4 = 16
Giải mỗi phương trình sau:
a) \({9^{16 - x}} = {27^{x + 4}}\)
b) \({16^{x - 2}} = 0,{25.2^{ - x + 4}}\)
a)
\(9^{16-x}=27^{x+4}\\ \Leftrightarrow3^{2.\left(16-x\right)}=3^{3.\left(x+4\right)}\\ \Leftrightarrow2.\left(16-x\right)=3.\left(x+4\right)\\ \Leftrightarrow32-2x-3x-12=0\\ \Leftrightarrow-5x=-20\Leftrightarrow x=4\)
b)
\(16^{x-2}=0,25.2^{-x+4}\\ \Leftrightarrow2^{4\left(x-2\right)}=0,25.2^{-x+4}\\ \Leftrightarrow2^{4x-8+x-4}=0,25\\ \Leftrightarrow2^{5x-12}=0,25\Leftrightarrow5x-12=\log_20,25\\ \Leftrightarrow5x-12=-2\\ \Leftrightarrow x=2\)
giải phương trình x(x+2)(x+4)(x+6)=x^4-16
x(x + 2)(x + 4)(x + 6) = x4 - 16
=> x(x + 2)(x + 4)(x + 6) = (x2 + 4)(x2 - 4)
=> x(x + 2)(x + 4)(x + 6) = (x2 + 4)(x + 2)(x - 2)
=> (x + 2). [ x(x + 4)(x + 6) - (x2 + 4)(x - 2) ] = 0
=> (x + 2). (x3 + 10x2 + 24x - x3 + 2x2 - 4x + 8) = 0
=> (x + 2) . (12x2 + 20x + 8) = 0
=> (x + 2)(x + 1)(3x + 2) = 0
=> x + 2 = 0 => x = -2
hoặc x + 1 = 0 => x = -1
hoặc 3x + 2 = 0 => x = -2/3
Vậy x = {-2 ; -1 ; -2/3}
x(x + 2)(x + 4)(x + 6) = x 4 - 16
=> x(x + 2)(x + 4)(x + 6) = (x 2 + 4)(x 2 - 4)
=> x(x + 2)(x + 4)(x + 6) = (x 2 + 4)(x + 2)(x - 2)
=> (x + 2). [ x(x + 4)(x + 6) - (x 2 + 4)(x - 2) ] = 0
=> (x + 2). (x 3 + 10x 2 + 24x - x 3 + 2x 2 - 4x + 8) = 0
=> (x + 2) . (12x 2 + 20x + 8) = 0 => (x + 2)(x + 1)(3x + 2) = 0
=> x + 2 = 0 => x = -2
hoặc x + 1 = 0 => x = -1
hoặc 3x + 2 = 0 => x = -2/3
Vậy x = {-2 ; -1 ; -2/3}
giải phương trình (x+2)^4+(x+4)2=16
và (x+1)^4+(x+3)^4=82
giải phương trình:
\(\dfrac{x+2}{x^2+2x+4}+\)\(\dfrac{x-2}{x-2x+4}=\dfrac{32}{x\left(x^4+4x^{ }+16^{ }\right)}\)
Giải phương trình:
(x+2)/(x^2+2x+4) + (x-2)/(x^2-2x+4) = 32/x(x^4+4x^2+16)
Giải phương trình:
(x+2)/(x^2+2x+4) + (x-2)/(x^2-2x+4) = 32/x(x^4+4x^2+16)
a) 16 - 3x = 4
<=> 3x = 12
<=> x = 4
Vậy x = 4 là nghiệm phương trình
b) (x2 - 4x + 5)2 - (x - 1)(x - 3) = 4
<=> (x2 - 4x + 5)2 - 4 - (x - 1)(x - 3) = 0
<=> (x2 - 4x + 5 - 2)(x2 - 4x + 5 + 2) - (x - 1)(x - 3) = 0
<=> (x2 - 4x + 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0
<=> (x - 1)(x - 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0
<=> (x - 1)(x - 3)(x2 - 4x + 6) = 0
<=> (x - 1)(x - 3) = 0 (Vì x2 - 4x + 6 > 0 \(\forall x\))
<=> \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy x \(\in\left\{1;3\right\}\)là nghiệm phương trình
a)16-3x=4
3x=16-4
3x=12
x=4
Vậy x=4
b)(x2-4x+5)2-(x-1).(x-3)=4
[(x-2)2+1]2-[(x-2)+1].[(x-2)-1]=4
=>(x-2)2+2.(x-2).1+1-(x-2)2-12=4
2(x-2)=4
=>x-2=2
=>x=4
Vậy ....................
Chú bn học tốt
a) 16 - 3x = 4
<=> 3x = 12
<=> x = 4
Vậy x = 4 là nghiệm phương trình
b) (x2 - 4x + 5)2 - (x - 1)(x - 3) = 4
<=> (x2 - 4x + 5)2 - 4 - (x - 1)(x - 3) = 0
<=> (x2 - 4x + 5 - 2)(x2 - 4x + 5 + 2) - (x - 1)(x - 3) = 0
<=> (x2 - 4x + 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0
<=> (x - 1)(x - 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0
<=> (x - 1)(x - 3)(x2 - 4x + 6) = 0
<=> (x - 1)(x - 3) = 0 (Vì x2 - 4x + 6 > 0 ∀x)
<=> [
x−1=0 |
x−3=0 |
⇔[
x=1 |
x=3 |
Vậy x ∈{1;3}là nghiệm phương trình
Giải phương trình
(x+7)(x-4)=2(x-4)
(3x-1)^=16
*) (x+7)(x-4)=2(x-4)
<=> (x+7)(x-4)=2(x-4)
<=> (x+7)(x-4)-2(x-4)=0
<=> (x-4)(x+7-2)=0
<=> (x-4)(x+5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-5\end{cases}}}\)
*) \(\left(3x-1\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=4\\3x-1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=5\\3x=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}}\)
giải phương trình
a, (x + 3)^4 + (x + 5)^4 = 16
b, (x - 2)^4 + (x - 3)^4 = 1
giải chi tiết giùm nha
a/ (x + 3)4 + (x + 5)4 = 16
=> (x2 + 6x + 9)2 + (x2 + 10x + 25)2 = 16
=> x4 + 36x2 + 81 + 12x3 + 108x + 18x2 + x4 + 100x2 + 625 + 20x3 + 500x + 50x2 = 16
=> 2x4 + 32x3 + 204x2 + 608x + 690 = 0
=> 2(x + 3)(x + 5)(x2 + 8x + 23) = 0
=> (x + 3)(x + 5)(x2 + 8x + 23) = 0
=> x = -3
hoặc x = -5
hoặc x2 + 8x + 23 = 0 , mà x2 + 8x + 23 > 0 => pt vô nghiệm
Vậy x = -3 , x = -5
\(a.\) \(\left(x+3\right)^4+\left(x+5\right)^4=16\) \(\left(1\right)\)
Đặt \(y=x+4\), khi đó, phương trình \(\left(1\right)\) trở thành:
\(\left(y-1\right)^4+\left(y+1\right)^4=16\)
\(\Leftrightarrow\) \(y^4-4y^3+6y^2-14y+1+y^4+4y^3+6y^2+14y+1=16\)
\(\Leftrightarrow\) \(2y^4+12y^2+2=16\)
\(\Leftrightarrow\) \(y^4+6y^2+1=8\)
\(\Leftrightarrow\) \(y^4+6y^2-7=0\)
\(\Leftrightarrow\) \(\left(y^2-1\right)\left(y^2+7\right)=0\) \(\left(1'\right)\)
Vì \(y^2+7>0\) với mọi \(y\) (vì \(y^2\ge0\) ) nên từ \(\left(1'\right)\), suy ra \(y^2-1=0\), hay \(y^2=1\) \(\Leftrightarrow\) \(^{y=1}_{y=-1}\)
Do đó, ta tìm được \(x_1=-3\) hoặc \(x_2=-5\)
Vậy, \(S=\left\{-3;-5\right\}\)