cho x+2y=xy;x và x+y khác 0.Tìm giá trị lớn nhất của (x-y)/(x+y)
cho A=x^2y+2X^3-xy^2+5 b=x^3+xy^2-2x^2y-6 a) tính tổng a và b b) tìm đa thức c biết B=a+c
a) `A+B=x^2y+2x^3-xy^2+5+x^3+xy^2-2x^2y-6`
`=(x^2y-2x^2y)+(2x^3+x^3)+(-xy^2+xy^2)+(5-6)`
`=3x^3-x^2y-1`
``
b) `B=A+C`
`<=>C=B-A`
`<=>C=x^3+xy^2-2x^2y-6-(x^2y+2x^3-xy^2+5)`
`<=>C =x^3+xy^2-2x^2y-6-x^2y-2x^3+xy^2-5`
`<=> C=(x^3-2x^3)+(xy^2+xy^2)+(-2x^2y-x^2y)+(-6-5)`
`<=>C=-x^3+2xy^2-3x^2y-11`
g)(x+3y)(x-3y+2) h)(x+2y((x-2y+3) I)(x^2-xy+y^2)(x+y) J)(x^2-xy+y^2)(x+y) K)(5x-2y)(x^2-xy-1) L)(x^2y^2-xy+y)(x-y)
g: (x+3y)(x-3y+2)
=(x+3y)(x-3y)+2(x+3y)
=x^2-9y^2+2x+6y
h: (x+2y)(x-2y+3)
=(x+2y)(x-2y)+3(x+2y)
=x^2-4y^2+3x+6y
i: (x^2-xy+y^2)(x+y)
=x^3+x^2y-x^2y-xy^2+xy^2+y^3
=x^3+y^3
j: (x+y)(x^2-xy+y^2)=x^3+y^3
k: (5x-2y)(x^2-xy-1)
=5x*x^2-5x*xy-5x-2y*x^2+2y*xy+2y
=5x^3-5x^2y-5x-2x^2y+2xy^2+2y
=5x^3-7x^2y+2xy^2-5x+2y
l: (x^2y^2-xy+y)(x-y)
=x^3y^2-x^2y^3-x^2y^2+xy^2+xy-y^2
Tìm cặp số nguyên (x,y) sao cho :
A) xy + 3x - 2y - 7 = 0
B) xy - x + 5y - 7 = 0
C ) x + 2y = xy + 2
ĐKXĐ : x,y ∈ Z
a) xy + 3x - 2y - 7 = 0
<=> x( y + 3 ) - 2( y + 3 ) - 1 = 0
<=> ( y + 3 )( x - 2 ) = 1
Ta có bảng sau :
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | 1 |
y | -2 | -4 |
Vậy ( x ; y ) = { ( 3 ; -2 ) , ( 1 ; -4 ) }
b) xy - x + 5y - 7 = 0
<=> x( y - 1 ) + 5( y - 1 ) - 2 = 0
<=> ( y - 1 )( x + 5 ) = 2
Ta có bảng sau :
x+5 | 1 | -1 | 2 | -2 |
y-1 | 2 | -2 | 1 | -1 |
x | -4 | -6 | -3 | -7 |
y | 3 | -1 | 2 | 0 |
Vậy ( x ; y ) = { ( -4 ; 3 ) , ( -6 ; -1 ) , ( -3 ; 2 ) , ( -7 ; 0 ) }
c) x + 2y = xy + 2
<=> x + 2y - xy - 2 = 0
<=> x( 1 - y ) - 2( 1 - y ) = 0
<=> ( x - 2 )( 1 - y ) = 0
<=> \(\hept{\begin{cases}x-2=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy ( x ; y ) = ( 2 ; 1 )
à cho mình sửa ý c) một chút nhé
( x - 2 )( 1 - y ) = 0
Với x - 2 = 0 => x = 2 và nghiệm đúng ∀ y ∈ R
Với 1 - y = 0 => y = 1 và nghiệm đúng ∀ x ∈ R
Tìm các số nguyên x,y sao cho:
a,xy+3x-2y=12
b,3x+4y-xy=15
c,5x+2y-xy=16
d,xy+12=x+y
a)xy+3x-2y=12
=>x(y+3)-2y=12
=>x(y+3)-2(y+3)=6
<=>(x-2)(y+3)=6
th1:(x-2)=1 <-> x=3
(y+3)=6 <-> y=3
th2:(x-2)=6 <-> x=8
(y+3)=1 <-> y=-2
th3:(x-2)=2 <-> x=4
(y+3)=3 <-> y=0
th4:(x-2)=3 <-> x=5
(y+3)=2 <-> y=-1
Vậy (x,y) thuộc {(3;3);(8;-2);(4;0);(5;-1)
Các câu khác làm tương tự
cho 2 số thực `x,y` thỏa mãn `x>0,y>2,x`\(\ne\)`2y`. CMR: \(\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right)\left(2x^2+y+2\right):\dfrac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}=\dfrac{x+1}{2y-x}\)
Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:
\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
Cho x>y>2
a.chứng minh x+y>4, xy>4
b. x2 -xy>0, y2 -2y>0, xy-y2>0
a: x>2
y>2
=>x+y>2+2=4
x>y>2
=>xy>2^2=4
b: x^2-xy=x(x-y)
x-y>0; x>0
=>x(x-y)>0
=>x^2-xy>0
y>2
=>y-2>0
=>y(y-2)>0
=>y^2-2y>0
x>y và y>2
=>y>0 và x-y>0
=>y(x-y)>0
=>xy-y^2>0
Cho x,y>0 ; x+y<=6
Tìm minB=\(\dfrac{x^2y+xy^2+24x+6y}{xy}\).
\(B=x+y+\dfrac{6}{x}+\dfrac{24}{y}=\left(\dfrac{3x}{2}+\dfrac{6}{x}\right)+\left(\dfrac{3y}{2}+\dfrac{24}{y}\right)-\dfrac{3}{2}\left(x+y\right)\)
\(B\ge2\sqrt{\dfrac{18x}{2x}}+2\sqrt{\dfrac{72y}{2y}}-\dfrac{3}{2}.6=15\)
\(B_{min}=15\) khi \(\left(x;y\right)=\left(2;4\right)\)
cho BIỂU THỨC:
P =\(\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2y+2}\)
RÚT GỌN P
cho xy =11 và x^2y+xy^2+x+y= 2010 tình c=x^2+y^2
\(x^2y+xy^2+x+y=2010\)
\(\Rightarrow xy\cdot\left(x+y\right)+x+y=2010\)
\(\Rightarrow\left(xy+1\right)\cdot\left(x+y\right)=2010\)
Với : \(xy=11\)
\(\Rightarrow x+y=\dfrac{2010}{12}=\dfrac{335}{2}\)
\(C=x^2+y^2=\left(x+y\right)^2-2xy=\left(\dfrac{335}{2}\right)^2-2\cdot11=\dfrac{112137}{4}\)
Ta có: \(x^2y+xy^2+x+y=2010\)
\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)
\(\Leftrightarrow\left(x+y\right)\left(xy+1\right)=2010\)
\(\Leftrightarrow x+y=\dfrac{2010}{11+1}=\dfrac{2010}{12}=\dfrac{335}{2}\)
Ta có: \(C=x^2+y^2\)
\(=\left(x+y\right)^2-2xy\)
\(=\left(\dfrac{335}{2}\right)^2-2\cdot11\)
\(=\dfrac{112137}{4}\)