chung minh rang 1\2 mu 2+1\3 mu 2+1\4 mu2+...+1\100 mu 2 < 1
chung to rang B = 1/2mu 2 cong 1/3 mu 2 cong 1/4 mu 2 cong 1/5 mu 2 cong 1/6 mu 2cong 1/7 mu 2 cong 1/8 mu2 nho hon 1
chung minh rang : 1 phan 2 mu 2 + 1 phan 2 mu 3 + 1 phan 2 mu 4 + .......+ 1phan 2 mu 11 < 1
Ta thấy:
1/22<1/1*2; 1/3^2<1/2*3;...;1/2^11<1/10*11
=> tổng đó nhỏ hơn 1/1*2+1/2*3+...+1/10*11
= 1-1/2+1/2-1/3+...+1/10-1/11
=1-1/11<1
=> tổng đó nhỏ hơn 1
chung minh
1 + 4 + 4 mu2 +........+ 4 mu 11 : het cho 5 va 21
7 + 7 mu 2 + 7 mu 3 +.....+ 7 mu 102 : het cho 8
\(1+^2+4^3+......+4^{10}+4^{11}\)
\(=\left(1+4\right)+\left(4^2+4^3\right)+.....+\left(4^{10}+4^{11}\right)\)
Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 5. Vậy tổng \(1+^2+4^3+......+4^{10}+4^{11}\) chia hết cho 5
\(7+7^2+7^3+.....+7^{102}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+....+\left(7^{101}+7^{102}\right)\)
Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 8. Vậy tổng \(7+7^2+7^3+.....+7^{102}\) chia hết cho 8
a, \(1+4+4^2+...+4^{11}\)
Đặt : \(S=1+4+4^2+...+4^{11}\)
Ta có : Số số hạng của dãy số S chính là số số hạng của dãy số cách đều từ 0 --> 11 mỗi số cách nhau 1 đơn vị
=> Số số hạng của S là : \(\frac{11-0}{1}+1=12\) ( số hạng )
Vậy ta có số nhóm là :
12 : 2 = 6 ( nhóm ) :
\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{10}+4^{11}\right)\) ( 6 nhóm )
\(\Rightarrow S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{10}\left(1+4\right)\)
\(\Rightarrow S=1.5+4^2.5+...+4^{10}.5\)
\(\Rightarrow S=\left(1+4^2+...+4^{10}\right).5\)
Mà : \(1+4^2+...+4^{10}\in N\Rightarrow S⋮5\)
---------
Tương tự để chứng minh S chia hết cho 21 ta có số nhóm là :
12 : 3 = 4 ( nhóm )
\(S=\left(1+4+4^2\right)+...+\left(4^9+4^{10}+4^{10}\right)\) ( 4 nhóm )
\(\Rightarrow S=\left(1+4+4^2\right)+...+4^9\left(1+4+4^2\right)\)
\(\Rightarrow S=1.21+...+4^9.21\)
\(\Rightarrow S=\left(1+...+4^9\right).21\)
Mà : \(1+...+4^9\in N\Rightarrow S⋮21\)
b, \(7+7^2+7^3+...+7^{102}\)
Đặt : \(M=7+7^2+7^3+...+7^{102}\)
Ta có : Số số hạng của dãy số M chính là số số hạng của dãy số cách đều từ 1 --> 102 mỗi số cách nhau 1 đơn vị
=> Số số hạng của M là : \(\frac{102-1}{1}+1=102\) ( số hạng )
Vậy có tất cả số nhóm là :
102 : 2 = 51 ( nhóm )
\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{101}+7^{102}\right)\)
\(\Rightarrow M=\left(7+7^2\right)+7^2\left(7+7^2\right)+...+7^{100}\left(7+7^2\right)\)
\(\Rightarrow M=1.56+7^2.56+...+7^{100}.56\)
\(\Rightarrow M=\left(1+7^2+...+7^{100}\right).56\)
Vì : 56 = 8.7 . Mà : \(1+7^2+...+7^{100}\in N\Rightarrow M⋮8\)
chung minh :1phan 11 mu 2 + 1phan 12mu 2 + 1 phan 13 mu2+..........+1 phan 100 mu2 <9phan100 chi giup voi quen cach lam roi
chung minh 1-1/2 mu 2 -1/ 3 mu 2 - 1/ 4 mu 2 - ... - 1/2015 mu 2 > 1/2015
\(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2015^2}=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\right)\)
\(=1-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\right)>1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=1-\left(1-\frac{1}{2015}\right)=1-\frac{2014}{2015}=\frac{1}{2015}\)
=> \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2015^2}>\frac{1}{2015}\left(\text{đpcm}\right)\)
cho s= 2+2 mu 2+2 mu 3+ 2mu 4 +....+2 mu 99 +2 mu 100
a, tinh S
b,CHUNG MINH RANG S CHI HET CHO 3
a, S = 2 + 22 + 23 + 24 + ... + 299 + 2100. 2S = 22 + 23 + 24 + 25 + ... + 2100 + 2101 => 2S - S = S = (22 + 23 + 24 + 25 + ... + 2100 + 2101) - (2 + 22 + 23 + 24 + ... + 299 + 2100) = 2101 - 2. Vậy S = 2101 - 2. b, S = 2 + 22 + 23 + 24 + ... + 299 + 2100 = (2 + 22) + (23 + 24) + ... + (299 + 2100) = 2.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2) = (1 + 2).(2 + 23 + ... + 299) = 3.(2 + 23 + ... + 299) => S ⋮ 3. Vậy S ⋮ 3 (đpcm)
bai 1; cho tong M =126 +213+x. Tim x de M chia het cho 3
bai 2; chung to rang tong ; A= 2 + 2 mu 3 + 2 mu 4 + 2 mu 5 + 2 mu 6 +2 mu 7 +2 mu 9 + 2 mu 10 + 2 mu 12 chia het cho 5
Có : 126 chia hết cho 3, 213 chia hết cho 3
Để được M chia hết cho 3 thì x phải chia hết cho 3
Hay gọi là 3k ( k thuộc N)
2.
Hình như đầu bài bài 2 sai
dung do khong sai dau
chung to rang 1 tren 1 mu 2 + 1 tren 1 mu 3+...+1 tren n mu 2( voi n thuoc N sao) ko phai la mot so tu nhien
(2/3)mu 3.(-3/4)mu2.(-1)mu5
(2/5)mu2.(-5/12)mu2
a) \(\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}^2\right).\left(-1\right)^5\)
\(=\dfrac{8}{27}.\dfrac{9}{16}.\left(-1\right)\)
\(=\dfrac{1}{6}.\left(-1\right)\)
=\(\dfrac{-1}{6}\)
b) \(\left(\dfrac{2}{5}\right)^2.\left(\dfrac{-5}{12}\right)^2\)
\(=\dfrac{4}{25}.\dfrac{25}{144}\)
\(=\dfrac{1}{36}\)