Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
N.T.M.D
Xem chi tiết
Đặng Khánh
3 tháng 6 2021 lúc 10:28

đưa nó vế dạng a^3 + b^3 + c^3 = 3abc

Đỗ Trung Hiếu
3 tháng 6 2021 lúc 11:00

Ta có :

    \(x^3\) + \(y^3\) - xy = \(-\dfrac{1}{27}\)

⇔ \(x^3\) + \(y^3\) - xy + \(\dfrac{1}{27}\) = 0

⇔  \(x^3\) + \(y^3\) + \(\dfrac{1^3}{3^3}\) - 3xy.\(\dfrac{1}{3}\) = 0

⇔ (x + y + \(\dfrac{1}{3}\))(\(x^2\) + \(y^2\) + \(\dfrac{1}{9}\) - xy - \(\dfrac{1}{3}x-\dfrac{1}{3}y\)) = 0

TH1 :

x + y + \(\dfrac{1}{3}\) = 0

⇔ x + y = - \(\dfrac{1}{3}\) (loại vì x>0 ; y>0)

TH2 :

\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)\(\dfrac{1}{3}x-\dfrac{1}{3}y\)

⇔ (\(x-\dfrac{1}{3}\))\(^2\) + (\(y-\dfrac{1}{3}\))\(^2\) + (x - y)\(^2\) = 0

⇒ \(x-\dfrac{1}{3}\) = 0       

    \(y-\dfrac{1}{3}\) = 0

    \(x-y\) = 0

⇔ x = y = \(\dfrac{1}{3}\)

Thay x = y = \(\dfrac{1}{3}\) vào \(\dfrac{x}{y^2}\) ta được :

   \(\dfrac{1}{3}\) : \(\dfrac{1}{9}\)

\(\dfrac{1}{3}\) . 9

= 3

\(\dfrac{1}{3}\)\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)

Đặng Khánh
7 tháng 6 2021 lúc 17:48

Đặt \(f_{\left(x\right)}=ax^2+bx+c\left(a\ne0\right)\)

\(f_{\left(x\right)}=x\leftrightarrow ax^2+bx+c=x\leftrightarrow ax^2+\left(b-1\right)x+c=0\)

\(\Delta=\left(b-1\right)^2-4ac< 0\)

\(f_{\left(f_{\left(x\right)}\right)}=x\leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=x\)

\(\leftrightarrow\left(a^2x^2+a\left(b+1\right)x+ac+b+1\right)\left(ax^2+\left(b-1\right)x+c\right)=0\)

Do\(\left(ax^2+\left(b-1\right)x+c\right)\ne0\)

\(\leftrightarrow a^2x^2+a\left(b+1\right)x+ac+b+1=0\)

\(\Lambda=\left[a\left(b+1\right)\right]^2-4a^2\left(ac+b+1\right)=a^2\left[\left(b+1\right)^2-4\left(ac+b+1\right)\right]=a^2\left[\left(b-1\right)^2-4ac-4\right]< 0\)

-> đpcm

 

bùi thị minh thái
Xem chi tiết
Nguyễn Linh Chi
10 tháng 12 2019 lúc 23:41

Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)

<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)

<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)

(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0

( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y

nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y

Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

<=> \(x=y=\frac{1}{3}\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
10 tháng 12 2019 lúc 23:42

Làm tiếp:

Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P

ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)

Khách vãng lai đã xóa
N.T.M.D
Xem chi tiết
Nguyễn Gia Như
3 tháng 6 2021 lúc 9:51

\(\frac{1}{9}\)

Khách vãng lai đã xóa
tiến vũ lớp 9 đàm
Xem chi tiết
Akai Haruma
28 tháng 10 2021 lúc 7:37

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn

Phạm Thị Nguyệt Hà
Xem chi tiết
nguyen van bi
Xem chi tiết
Giao Khánh Linh
Xem chi tiết
lili
11 tháng 11 2019 lúc 23:20

Ko khó nếu bạn bt BĐT này

Áp dụng BĐT mincopxki 

=> M >= căn [(x+y)^2+(1/x+1/y)^2]

=> M >= căn {4^2+[4/(x+y)]^2} áp dụng cauchy schwarz

=> M >= căn {16+1} do x+y=4

=> M >= căn 17

''='' xảy ra <=> x=y; x+y=4 

<=> x=y=2 và M min = căn 17.

Khách vãng lai đã xóa
Hieu vu the
Xem chi tiết
Sắc màu
25 tháng 4 2018 lúc 14:56

Nhận xét :

x2 lớn hơn 0 ( với mọi x dương )

y2 lớn hơn 0 ( với mọi y dương )

Để Amin => \(\frac{1}{x^2}+\frac{1}{y^2}\) Min => x2  và y max 

Nhưng x + y = 2 

=> x = y = 1 

A min = \(\frac{1}{1}+\frac{1}{1}+\frac{3}{1}=5\) 

Vậy A min = 5 <=>  x = y = 1

Nguyen Viet Bac
25 tháng 4 2018 lúc 15:14

\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}\) và x + y = 2

AM-GM => x + y >= \(2\sqrt{xy}\)

=> \(2\sqrt{xy}\)<= 2

=> xy <= 1

\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{xy}\)

=> A >= 1/xy + 3/xy

=> A >= 4/xy

mà xy <= 1

=> A >= 4/1

=> A>= 4 

dấu bằng sảy ra khi x = y = 2/2 = 1

Vậy GTNN của A là 4 khi x = y = 1

Nguyen Viet Bac
25 tháng 4 2018 lúc 15:15

Nhầm 1/x^2 + 1/y^2 >= 2/xy

=> A >= 5

khi x = y = 1 nhé

Phương Hà
Xem chi tiết
Lầy Văn Lội
4 tháng 6 2017 lúc 0:17

ÁP dụng BĐT AM-GM: \(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}\le\frac{1}{2}\left(2+x^2\right)\)

thiết lập tương tự và cộng theo vế :\(P\ge\frac{1}{\frac{1}{2}\left(2+x^2\right)}+\frac{1}{\frac{1}{2}\left(2+y^2\right)}=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\)

Áp dụng BĐT cauchy-schwarz:(bunyakovsky dạng phân thức)

\(VT=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\ge\frac{8}{x^2+y^2+4}=\frac{8}{12}=\frac{2}{3}\)

Dấu ''=''xảy ra khi x=y=2

Biện Văn Hùng
4 tháng 6 2017 lúc 9:39

\(\frac{a}{\sqrt{b+c-a}}=\frac{a^2}{\sqrt{a}\sqrt{a}\sqrt{b+c-a}}>\frac{a^2}{\sqrt{\frac{\left(b+c-a+2a\right)^3}{27}}}=\frac{a^2}{\sqrt{\left(a+b+c\right)^3}}\)

Minh Anh
19 tháng 5 2020 lúc 13:53

no biết

Khách vãng lai đã xóa