cho 2 số dương thỏa mãn \(x^3+y-x\sqrt[3]{y}=\frac{-1}{27}\) . Tính giá trị của \(\frac{x}{y}\)
Cho 2 số dương x,y thỏa mãn \(x^3+y^3\)- xy =\(-\frac{1}{27}\)
Tính giá trị của x/y^2
Ta có :
\(x^3\) + \(y^3\) - xy = \(-\dfrac{1}{27}\)
⇔ \(x^3\) + \(y^3\) - xy + \(\dfrac{1}{27}\) = 0
⇔ \(x^3\) + \(y^3\) + \(\dfrac{1^3}{3^3}\) - 3xy.\(\dfrac{1}{3}\) = 0
⇔ (x + y + \(\dfrac{1}{3}\))(\(x^2\) + \(y^2\) + \(\dfrac{1}{9}\) - xy - \(\dfrac{1}{3}x-\dfrac{1}{3}y\)) = 0
TH1 :
x + y + \(\dfrac{1}{3}\) = 0
⇔ x + y = - \(\dfrac{1}{3}\) (loại vì x>0 ; y>0)
TH2 :
\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)\(\dfrac{1}{3}x-\dfrac{1}{3}y\)
⇔ (\(x-\dfrac{1}{3}\))\(^2\) + (\(y-\dfrac{1}{3}\))\(^2\) + (x - y)\(^2\) = 0
⇒ \(x-\dfrac{1}{3}\) = 0
\(y-\dfrac{1}{3}\) = 0
\(x-y\) = 0
⇔ x = y = \(\dfrac{1}{3}\)
Thay x = y = \(\dfrac{1}{3}\) vào \(\dfrac{x}{y^2}\) ta được :
\(\dfrac{1}{3}\) : \(\dfrac{1}{9}\)
= \(\dfrac{1}{3}\) . 9
= 3
\(\dfrac{1}{3}\)\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)
Đặt \(f_{\left(x\right)}=ax^2+bx+c\left(a\ne0\right)\)
\(f_{\left(x\right)}=x\leftrightarrow ax^2+bx+c=x\leftrightarrow ax^2+\left(b-1\right)x+c=0\)
\(\Delta=\left(b-1\right)^2-4ac< 0\)
\(f_{\left(f_{\left(x\right)}\right)}=x\leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=x\)
\(\leftrightarrow\left(a^2x^2+a\left(b+1\right)x+ac+b+1\right)\left(ax^2+\left(b-1\right)x+c\right)=0\)
Do\(\left(ax^2+\left(b-1\right)x+c\right)\ne0\)
\(\leftrightarrow a^2x^2+a\left(b+1\right)x+ac+b+1=0\)
\(\Lambda=\left[a\left(b+1\right)\right]^2-4a^2\left(ac+b+1\right)=a^2\left[\left(b+1\right)^2-4\left(ac+b+1\right)\right]=a^2\left[\left(b-1\right)^2-4ac-4\right]< 0\)
-> đpcm
Cho 2 số thực x,y dương thỏa mãn \(x^3+y^3=xy-\frac{1}{27}\)
Tính giá trị của biểu thức P=\(\left(x+y+\frac{1}{3}\right)^3-\frac{3}{2}\left(x+y\right)+2016\)
Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)
<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)
<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)
(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0
( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y
nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y
Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)
<=> \(x=y=\frac{1}{3}\)
Làm tiếp:
Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P
ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)
Cho 2 số dương x,y thỏa mãn \(x^3+y^3\)- xy =\(-\frac{1}{27}\)
Tính giá trị của x/y^2
cho 3 số thực dương x,y,z thỏa mãn x+y+z=xyz
tìm giá trị lớn nhất của biểu thức p=\frac{1}{\sqrt{x^2+1}}\:+\frac{1}{\sqrt{\gamma ^2+1}}+\frac{1}{\sqrt{z^2+1}}
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn
Cho 3 số dương x,y,z thỏa mãn \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=\frac{1}{\sqrt{xyz}}\)
Tìm giá trị lớn nhất của P = \(\frac{2\sqrt{x}}{1+x}+\frac{2\sqrt{y}}{1+y}+\frac{z-1}{z+1}\)
Cho ba số dương x,y,z thỏa mãn \(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}=3\)
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}+\frac{1}{3\sqrt{x}+2\sqrt{y}+3\sqrt{z}}+\frac{1}{2\sqrt{x}+3\sqrt{y}+3\sqrt{z}}\)
Cho x,y là các số dương thỏa mãn: x+y=4. Tìm giá trị nhỏ nhất của \(M=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\)
Ko khó nếu bạn bt BĐT này
Áp dụng BĐT mincopxki
=> M >= căn [(x+y)^2+(1/x+1/y)^2]
=> M >= căn {4^2+[4/(x+y)]^2} áp dụng cauchy schwarz
=> M >= căn {16+1} do x+y=4
=> M >= căn 17
''='' xảy ra <=> x=y; x+y=4
<=> x=y=2 và M min = căn 17.
Cho hai số dương x, y thỏa mãn x + y = 2. Tính giá trị nhỏ nhất của biểu thức
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}.\)
Nhận xét :
x2 lớn hơn 0 ( với mọi x dương )
y2 lớn hơn 0 ( với mọi y dương )
Để Amin => \(\frac{1}{x^2}+\frac{1}{y^2}\) Min => x2 và y2 max
Nhưng x + y = 2
=> x = y = 1
A min = \(\frac{1}{1}+\frac{1}{1}+\frac{3}{1}=5\)
Vậy A min = 5 <=> x = y = 1
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}\) và x + y = 2
AM-GM => x + y >= \(2\sqrt{xy}\)
=> \(2\sqrt{xy}\)<= 2
=> xy <= 1
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{xy}\)
=> A >= 1/xy + 3/xy
=> A >= 4/xy
mà xy <= 1
=> A >= 4/1
=> A>= 4
dấu bằng sảy ra khi x = y = 2/2 = 1
Vậy GTNN của A là 4 khi x = y = 1
Nhầm 1/x^2 + 1/y^2 >= 2/xy
=> A >= 5
khi x = y = 1 nhé
Cho các số x, y dương thỏa mãn: \(x^2+y^2=8\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{1}{\sqrt{1+x^3}}+\frac{1}{\sqrt{1+y^3}}\)
ÁP dụng BĐT AM-GM: \(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}\le\frac{1}{2}\left(2+x^2\right)\)
thiết lập tương tự và cộng theo vế :\(P\ge\frac{1}{\frac{1}{2}\left(2+x^2\right)}+\frac{1}{\frac{1}{2}\left(2+y^2\right)}=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\)
Áp dụng BĐT cauchy-schwarz:(bunyakovsky dạng phân thức)
\(VT=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\ge\frac{8}{x^2+y^2+4}=\frac{8}{12}=\frac{2}{3}\)
Dấu ''=''xảy ra khi x=y=2
\(\frac{a}{\sqrt{b+c-a}}=\frac{a^2}{\sqrt{a}\sqrt{a}\sqrt{b+c-a}}>\frac{a^2}{\sqrt{\frac{\left(b+c-a+2a\right)^3}{27}}}=\frac{a^2}{\sqrt{\left(a+b+c\right)^3}}\)