Cho ba số dương x,y,z thỏa mãn \(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}=3\)
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}+\frac{1}{3\sqrt{x}+2\sqrt{y}+3\sqrt{z}}+\frac{1}{2\sqrt{x}+3\sqrt{y}+3\sqrt{z}}\)
Cho x,y là các số dương thỏa mãn: x+y=4. Tìm giá trị nhỏ nhất của \(M=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\)
Cho các số x, y dương thỏa mãn: \(x^2+y^2=8\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{1}{\sqrt{1+x^3}}+\frac{1}{\sqrt{1+y^3}}\)
\(\text{Với x,y,z là các số thực dương thay đổi và thỏa mãn 1/x+1/y+1/z=3. Tìm giá trị lớn nhất của biểu thức}:P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
1)cho a,b,c dương thỏa mãn abc=1
tìm giá trị nhỏ nhất của B=\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+a^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ca}\)
2) cho x,y,z dương
tìm giá trị nhỏ nhất của P=\(x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{xz}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
cho x, y,z là các số thực dương thỏa mãn \(^{x^3+y^3+z^3=1}\)
chứng minh rằng:
Giá trị của biểu thức \(A=\frac{x^2}{\sqrt{1-x^2}}+\frac{^{y^2}}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)
Cho 2 số thực dương x;y thỏa mãn \(2\sqrt{xy}+\frac{x}{3}=1\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{y}{x}+\frac{4x}{3y}+15xy\)
Cho x,y là 2 số dương thỏa mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{x+2y}{\sqrt{1-x}}\)+\(\frac{y+2x}{\sqrt{1-y}}\)
cho 3 số thực dương x,y,z thỏa mãn : \(2\sqrt{xy}+\sqrt{xz}=1\)1
tìm giá trị nhỏ nhất của A = \(\frac{3yz}{x}+\frac{4xz}{y}+\frac{5xy}{z}\)