Cho 3 số thực dương x,y,z thỏa mãn \(x+y+z=3\) Tìm giá trị nhỏ nhất của
\(P=\dfrac{\left(2x+3y+z\right)^3}{3\sqrt[3]{z^2x^2}+1}+\dfrac{\left(2y+3z+x\right)^3}{3\sqrt[3]{x^2y^2}+1}+\dfrac{\left(2z+3x+y\right)^3}{3\sqrt[3]{y^2z^2}+1}\)
Bài 1. Tìm điều kiện các BPT sau
a, \(\sqrt{20-x}>\sqrt{3x-6}+1\)
b, \(\frac{\sqrt{9-x^2}}{x-1}>\frac{1}{\sqrt{x}}+1\)
c, \(x+\frac{x+1}{\sqrt{x-4}}>2-\frac{2}{x^2-25}\)
d, \(\sqrt{x}>\sqrt{-x}\)
e, \(3x+\frac{4}{\sqrt{x-5}}\le9+\frac{x}{x-6}\)
f, \(\frac{x+2}{10+3x^2}\ge7+\frac{4}{\left(3x+9\right)^2}\)
g, \(\frac{\sqrt{x+2}}{\sqrt{x-2}}+\frac{1}{\left(x-4\right)\left(x+6\right)}\le\frac{3}{\sqrt{8-x}}\)
h, \(\frac{\sqrt{x+6}}{\left|x\right|-\sqrt{x+6}}\ge\sqrt{16-2x}\)
giải bất pt sau:
\(\frac{\sqrt{x^{2^{ }}-x-2}}{\sqrt{x-1}}+\sqrt{x-1}< \frac{2x+1}{\sqrt{x-1}}\)
cho \(\frac{x}{y+z}\)+\(\frac{y}{x+z}\)+\(\frac{z}{x+y}\)=1
tính 2019 + \(\frac{x^2}{y+z}\)+\(\frac{y^2}{z+x}\)+\(\frac{z^2}{x+y}\)
Giải các bất pt sau
a. \(\sqrt{3-x}+\sqrt{x-5}\ge-10\)
b. \(\frac{\left(x-2\right)\sqrt{x-1}}{\sqrt{x-1}}< 2\)
c. \(\frac{x+2}{3}-x+1>x+3\)
d. \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\)
Giải giúp em với ạ
Em cảm ơn nhiều
Tìm x, y, z biết
a/ x : y : z = 2 : 3 : (-4)
và x - y + z = -125
b/ \(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{6}\)
và 3x - 2y + z = 4
c/ \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
và x + y + z =147
d/ \(2x=3y;5y=7z\)
và 3x - 7y + 5z = 30
Giải các bất phương trình sau:
a) \(\frac{x^2-9x+14}{x^2+9x+14}\ge0\)
b) \(\frac{x^2+1}{x^2+3x-10}< 0\)
c) \(\frac{10-x}{5+x^2}>\frac{1}{2}\)
d) \(\frac{x+1}{x-1}+2>\frac{x-1}{x}\)
e) \(\frac{1}{x+1}+\frac{2}{x+3}\le\frac{3}{x+2}\)
f) \(\frac{x-3}{x+1}-\frac{x-2}{x-1}\le\frac{x^2+4x+15}{x^2-1}\)
g) \(\frac{x^2-4x+3}{x^2-2x}\ge0\)
h) \(\frac{x+2}{3x+1}\le\frac{x-2}{2x-1}\)
i) \(\frac{11x^2-5x+6}{x^2+5x+6}\le x\)
j) \(\frac{\left(1-2x\right)\left(\sqrt{3}x+1\right)}{2\sqrt{2}x-1}\ge0\)
k) \(\frac{\left(5x+1\right)-\left(7x-2\right)}{\left(-x^2-1\right)\left(x^2-4x+4\right)}\le0\)
l) \(\frac{1}{x^2-7x+5}\ge\frac{1}{x^2+2x+5}\)
m) \(\frac{\left(x-1\right)\left(x^3-1\right)}{x^2+\left(1+2\sqrt{2}\right)x+2+\sqrt{2}}\le0\)
\(\sqrt{\left(x-2\right)\left(4-x\right)}+\sqrt{x-2}.\sqrt{4-x}\le\frac{x-1}{2}+\sqrt{x-1}\)
Giải bpt
\(\frac{x+2}{\sqrt{2x+3}-\sqrt{x+1}}\ge\sqrt{2x^2+5x+3}+1\)