Cho 3 số a,b,c thỏa mãn \(a^2+b^2+c^2=3\) . Tìm giá trị lớn nhất của biểu thức P = a + b + 2c
cho ba số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=1\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\)
Áp dụng bđt Schwarz ta có:
\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).
Cho a,b,c là ba số thực dương thỏa mãn abc=1 . Tìm giá trị lớn nhất của biểu thức :\(P=\frac{1}{2a^3+b^3+c^3+2}+\frac{1}{a^3+2b^3+c^3+2}+\frac{1}{a^3+b^3+2c^3+2}\) .
Áp dụng bổ đề quen thuộc \(x^3+y^3\ge xy\left(x+y\right)\), ta được: \(\frac{1}{2a^3+b^3+c^3+2}=\frac{1}{\left(a^3+b^3\right)+\left(a^3+c^3\right)+2}\le\frac{1}{ab\left(a+b\right)+ac\left(a+c\right)+2}\)\(=\frac{bc}{ab^2c\left(a+b\right)+abc^2\left(a+c\right)+2bc}=\frac{bc}{b\left(a+b\right)+c\left(a+c\right)+2bc}\)\(\le\frac{bc}{ab+ac+4bc}=\frac{bc}{b\left(a+c\right)+c\left(a+b\right)+2bc}\)\(\le\frac{1}{9}\left(\frac{bc}{b\left(a+c\right)}+\frac{bc}{c\left(a+b\right)}+\frac{bc}{2bc}\right)=\frac{1}{9}\left(\frac{c}{a+c}+\frac{b}{a+b}+\frac{1}{2}\right)\)(1)
Tương tự, ta có: \(\frac{1}{a^3+2b^3+c^3+2}\le\frac{1}{9}\left(\frac{c}{b+c}+\frac{a}{a+b}+\frac{1}{2}\right)\)(2); \(\frac{1}{a^3+b^3+2c^3+2}\le\frac{1}{9}\left(\frac{b}{b+c}+\frac{a}{a+c}+\frac{1}{2}\right)\)(3)
Cộng theo vế ba bất đẳng thức (1), (2), (3), ta được: \(P\le\frac{1}{9}\left(1+1+1+\frac{3}{2}\right)=\frac{1}{2}\)
Vậy giá trị lớn nhất của P là \(\frac{1}{2}\)đạt được khi x = y = z = 1
Cho ba số dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{3}\). Tìm giá trị nhỏ nhất của biểu thức P= \(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
Cho biểu thức K = ab + 4ac – 4bc, với a, b, c là các số thực không âm thỏa mãn: a + b + 2c = 1
1, Chứng minh K lớn hơn hoặc bằng – 1/2
2, Tìm giá trị lớn nhất của biểu thức K
1
Áp dụng BĐT Cauchy cho 2 số dương:
4ac=2.b.2c≤2(b+2c2)2≤2(a+b+2c2)2=2.(12)2=12
⇒−4bc≥−12
⇒K=ab+4ac−4bc≥−4bc≥−12
Cho ba số thực dương a,b,c thỏa mãn ab+bc+ca = 3abc. Tìm giá
trị lớn nhất của biểu thức T = \(\sqrt{\dfrac{a}{3b^2c^2+abc}}+\sqrt{\dfrac{b}{3b^2c^2+abc}}+\sqrt{\dfrac{c}{3a^2b^2+abc}}\)
Ta có \(ab+bc+ca=3abc\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và
\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)
Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)
\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)
\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))
\(T\le\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)
Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)
(Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)
Bạn Lê Song Phương xem lại dùm nhé, thanks!
\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)
\(...\Rightarrow T\le2.3=6\)
\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)
Lúc mình đọc lời giải kia của bạn thì mình thấy cũng hợp lí nhưng mà Cô-si hơi nhầm tí ở chỗ \(\dfrac{1}{z+x}+\dfrac{1}{z+y}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt{\left(z+x\right)\left(z+y\right)}}\) ấy.
Nên là mình cũng dựa trên ý tưởng của bạn nhưng sửa \(\dfrac{1}{2}\) thành 2 thì mới đúng được
Không thì bạn cứ kiểm tra bằng cách thay điểm rơi \(a=b=c=1\) vào T thì nó ra \(\dfrac{3}{2}\) ngay chứ không ra 6 đâu.
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S=a+b+c+ab+bc+ca với a,b,c là các số thực thỏa mãn \(a^2+b^2+c^2=3\)
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)
\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)
Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)
\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)
\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)
\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)
\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)
Cho 3 số a,b,c thỏa mãn 0<= a,b,c <=1 va a,b,c=3/2. Tìm giá trị lớn nhất biểu thức p= a^2+b^2+c^2
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
Cho a,b,c là các số thực dương thỏa mãn abc=1. Tìm giá trị lớn nhất của biểu thức P=1/(a+2b+3)+1/(b+2c+3)+1/(c+2a+3)
Answer:
Có \(a+2b+3\)
\(=\left(a+b\right)+\left(b+1\right)+2\ge2\sqrt{ab}+2\sqrt{b}+2\)
\(\Rightarrow\frac{1}{a+2b+3}\le\frac{1}{2\left(\sqrt{ab}+\sqrt{b}+1\right)}\)
\(\Leftrightarrow\frac{1}{b+2c+3}\le\frac{1}{2\left(\sqrt{bc}+\sqrt{c}+1\right)}\)\(;\frac{1}{c+2c+3}\le\frac{1}{2\left(\sqrt{ac}+\sqrt{a}+1\right)}\)
\(\Rightarrow P\le\frac{1}{2}[\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{1}{\sqrt{bc}+\sqrt{c}+1}+\frac{1}{\sqrt{ac}+\sqrt{a}+1}]\)
Bởi vì abc = 1 nên \(\sqrt{abc}=1\)
\(\Rightarrow P\le\frac{1}{2}[\frac{\sqrt{c}}{1+\sqrt{bc}+\sqrt{c}}+\frac{1}{\sqrt{bc}+\sqrt{c}+1}+\frac{\sqrt{bc}}{\sqrt{bc}+\sqrt{c}+1}]\)
\(\Rightarrow P\le\frac{1\sqrt{bc}+\sqrt{c}+1}{2\sqrt{bc}+\sqrt{c}+1}\)
\(\Rightarrow P\le\frac{1}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Cho các số thực a, b, c thỏa mãn 2.( b2 + bc + c2) = 3.( 3 – a2). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức T = a + b + c
\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)
\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)
\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)
\(\Rightarrow-3\le a+b+c\le3\)
\(T_{max}=3\) khi \(a=b=c=1\)
\(T_{min}=-3\) khi \(a=b=c=-1\)