Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoang Tran

Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S=a+b+c+ab+bc+ca với a,b,c là các số thực thỏa mãn \(a^2+b^2+c^2=3\)

Nguyễn Việt Lâm
27 tháng 7 2021 lúc 22:30

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)

\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)

\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)

\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)

\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)

\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)


Các câu hỏi tương tự
Tôi là gió
Xem chi tiết
Nga Phạm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Văn Hoang Tran
Xem chi tiết
trần vũ hoàng phúc
Xem chi tiết
trần vũ hoàng phúc
Xem chi tiết
Nguyễn Tuấn Anh
Xem chi tiết
Hằng Nguyễn
Xem chi tiết
Tôi là gió
Xem chi tiết