Cho x,y>0 t/m x2+\(\frac{4}{y^2}\) = 1
Tìm GTNN của M= \(\frac{3x}{y}\) + \(\frac{y}{2x}\)
Bài 1: Cho x>0 , Tìm GTNN của A = \(\frac{3x^4+16}{x^3}\)
Bài 2: Cho 0<x<2 Tìm GTNN của A = \(\frac{9x}{2-x}+\frac{2}{x}\)
Bài 3 Cho 3 số dương x,y,z thỏa mãn x+y+z = 2
Tìm GTNN của P = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Mong mọi người giúp em
Cho x,y>0 và x+y≥4. Tìm GTNN của A= \(\frac{3x^2+4}{4x}+\frac{2+y^3}{y^2}\)
\(A=\frac{3x}{4}+\frac{1}{x}+\frac{2}{y^2}+y=\frac{x}{4}+\frac{1}{x}++\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}+\frac{x}{2}+\frac{y}{2}\)
\(\Rightarrow A\ge2\sqrt{\frac{x}{4}.\frac{1}{x}}+3\sqrt[3]{\frac{2}{y^2}.\frac{y}{4}.\frac{y}{4}}+\frac{1}{2}\left(x+y\right)=1+\frac{3}{2}+2=\frac{9}{2}\)
\(\Rightarrow A_{min}=\frac{9}{2}\) khi \(x=y=2\)
Cho x,y > 0 thỏa mãn\(x^2+\frac{4}{y^2}=1\)
tìm GTNN \(\frac{3x}{y}+\frac{y}{2x}\)
Cho x,y>0, thỏa mãn x2+y2=1. Tìm GTNN
M=\(\frac{3x}{y}\) + \(\frac{y}{2x}\)
Cho x, y>0 và 2x2 + 2xy +y2-2x≤8. Tìm GTNN của \(P=\frac{2}{x}+\frac{4}{y}-2x-3y\)
Ta có \(2x^2+2xy+y^2-2x\le8\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2\le9\)
\(\Rightarrow\left(x+y\right)^2\le9-\left(x-1\right)^2\le9\)
\(\Rightarrow x+y\le3\)
\(P=\frac{2}{x}+2x+\frac{4}{y}+y-4\left(x+y\right)\ge2\sqrt{\frac{4x}{x}}+2\sqrt{\frac{4y}{y}}-4.3=-4\)
\(\Rightarrow P_{min}=-4\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
ê viết lộn dòng này :v
\(MinA=\frac{2017}{2018}\)nha
1/CMR
a/\(x^4-2x^3+2x^2-2x+1\ge0\forall x\in R\)
b/cho \(a\ge0,b\ge2,a+b+c=3\). CMR : \(a^2+b^2+c^2\le5\)
c/cho a,b,c >0 . CMR : \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\ge4\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
2/ cho \(x,y\ge0,x+y=1\). tìm GTLN,GTNN của A =\(x^2+y^2\)
3/ cho x,y>0 .tìm GTNN của B= \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
Cho \(x,y,z>0\)và \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Tìm GTNN của \(P=\frac{y^2x^2}{x\left(y^2+x^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
https://olm.vn/hoi-dap/question/850271.html
x;y>0 x+y>=3 tìm gtnn \(A=x+y+\frac{1}{2x}+\frac{2}{y}\)
Rồng Đom ĐómNguyễn Thị Ngọc ThơKhôi Bùi Nguyễn Thành Trương