Ta có \(2x^2+2xy+y^2-2x\le8\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2\le9\)
\(\Rightarrow\left(x+y\right)^2\le9-\left(x-1\right)^2\le9\)
\(\Rightarrow x+y\le3\)
\(P=\frac{2}{x}+2x+\frac{4}{y}+y-4\left(x+y\right)\ge2\sqrt{\frac{4x}{x}}+2\sqrt{\frac{4y}{y}}-4.3=-4\)
\(\Rightarrow P_{min}=-4\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)