A=1+5+5^2+5^3+...+5^2019
So sánh 4A+1 với 624503
Cho A = 1 + 5 + 52 + 53 + 54 + ...+ 52017
B = 52018 - 1
So sánh 4A với B
Ta có:
A = 1 + 5 + 52 + 53 + 54 + ...+ 52017
A = \(\frac{5^{2017}-1}{5-1}\)
B = \(\frac{5^{2018}-1}{2-1}\)
=> \(4A=\frac{5^{2017}-1}{4}.4=5^{2017}-1< B=5^{2018}-1\)
Vậy 4A < B
Ta có: 5A=5(1+5+52+....+52017)
5A=5+52+53+....+52018
5A-A=(5+52+53+...+52018)-(1+5+52+....+52017)
4A=52018-1
Vì 4A=52018-1. Mà 52018-1=52018-1
Suy ra:4A=B
giúp mình với !!!!!!!!!!!!!!!!!!! đang cần gấp !!!!!!!!!!!!!!!
cho biểu thức a= 6+ 5\(^2\) + 5\(^3\) +........+ 5\(^{2022}\) + 5\(^{2023}\) . chứng minh 4a + 1 chia hết cho 5\(^{2023}\)
Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$
$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$
$\Rightarrow 5a-a=5^{2024}-1$
$\Rightarrow 4a=5^{2024}-1$
$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)
Tìm số tự nhiên n biết:
\(4A+1=5^n\)với\(A=1+5+5^2+5^3+...+5^{2014}\).
Ta có : A=1+5+52+...+52014
5A=5+52+53+...+52015
5A-A=(5+52+53+...+52015)-(1+5+52+...+52014)
\(\Rightarrow\)4A=52015-1
\(\Rightarrow\)4A+1=52015-1+1=52015
\(\Rightarrow\)5n=52015
\(\Rightarrow\)n=2015
Vậy n=2015.
\(Ta \) \(có : \)
\(A = 1 + 5 + 5 ^ 2 + ... + 5\)\(2014\)
\(5A = 5 + 5^ 2 + 5^ 3 + ... + 5\)\(2015\)
\(5A - A = ( 5 + 5^ 2 + 5^ 3+ ...+ 5\)\(2015\)\() - ( 1+ 5 + 5^2 + ...+ 5\)\(2014\)\()\)
\(4A = 5\)\(2015\) \(- 1 \)
\(\Leftrightarrow\)\(4A + 1 = 5\)\(2015\)
\(Mà \) \(theo \) \(đề \) \(ta \) \(có :\)\(4A + 1 = 5^n\)
\(\Rightarrow\)\(5^n = 5\)\(2015\)
\(\Rightarrow\)\(n = 2015\)
\(Vậy : n = 2015\)
So sánh : A=1+5+5^2+5^3+...+5^9/1+5+5^2+...+5^8
B=1+3+3^2+....+3^9/1+3+3^2+3^8
GIÚP MÌNH VỚI !!!!
XIN LỖI Ơ PHẦN B=1+3+3^2+...+3^8
Bạn đợi mình tí nha ! Mình đang giải !
Bài giải
\(A=\frac{1+5+5^2+5^3+...+5^9}{1+5+5^2+...+5^8}=1+\frac{5^9}{1+5+5^2+...+5^8}\)
Đặt \(C=1+5+5^2+..+5^8\)
\(5C=5+5^2+5^3+...+5^9\)
\(5C-C=4C=5^9-1\)
\(C=\frac{5^9-1}{4}\)
Thay vào ta được : \(A=\frac{5^9}{\frac{5^9-1}{4}}=1+\frac{5^9}{4\cdot5^9-4}=1+\frac{5^9}{4\left(5^9-1\right)}=1+\frac{5^9-1}{4\left(5^9-1\right)}+\frac{1}{4\left(5^9-1\right)}\)
\(=1+\frac{1}{4}+\frac{1}{4\left(5^9-1\right)}=\frac{5}{4}+\frac{1}{4\left(5^9-1\right)}\)
\(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}=1+\frac{3^9}{1+3+3^2+...+3^8}\)
Đặt \(D=1+3+3^2+...+3^8\)
\(3D=3+3^2+3^3+...+3^9\)
\(3D-D=2D=3^9-1\)
\(D=\frac{3^9-1}{2}\)
Thay vào ta được : \(B=1+\frac{3^9}{\frac{3^9-1}{2}}=1+\frac{3^9}{2\cdot3^9-2}=1+\frac{3^9}{2\left(3^9-1\right)}=1+\frac{3^9-1}{2\left(3^9-1\right)}+\frac{1}{2\left(3^9-1\right)}\)
\(=1+\frac{1}{2}+\frac{1}{2\left(3^9-1\right)}=\frac{3}{2}+\frac{1}{2\left(3^9-1\right)}\)
Vì \(\frac{5}{4}< \frac{3}{2}\) và \(\frac{1}{4\left(5^9-1\right)}< \frac{1}{2\left(3^9-1\right)}\) \(\Rightarrow\text{ }A< B\)
a) Cho a>b C/m 5a-3>5b-3
b) Cho a>bC/m 3-4a<3-4b
c) Cho a<b So sánh 5-2a và 5-2b
d) Cho 3-4a>3-4b So sánh a và b
GIÚP MÌNH VỚI MÌNH TICK CHO
Tìm giá trị lớn nhất của biểu thức: \(A=3\sqrt{2a-1}+a\sqrt{5-4a^2}\) với \(\dfrac{1}{2}\le a\le\dfrac{\sqrt{5}}{2}\)
Theo Cauchy:
\(3\sqrt{2a-1}=3\sqrt{1\left(2a-1\right)}\le\dfrac{3\left(1+2a-1\right)}{2}=3a\)
\(a\sqrt{5-4a^2}\le\dfrac{a^2+5-4a^2}{2}=\dfrac{5-3a^2}{2}\)
\(A\le3a+\dfrac{5-3a^2}{2}=\dfrac{5-3a^2+6a}{2}=\dfrac{-3\left(a-1\right)^2}{2}+4\le4\)
Vậy \(A_{max}=4\Leftrightarrow x=1\)
Đề ôn tập HK 2 - Đề 8
Bài 1:
a) Biết -3a - 1 > -3b - 1. So sánh a và b?
b) Biết 4a + 3 < 4b + 3. So sánh a và b?
Bài 2: Biết a < b, hãy so sánh:
a) 3a - 7 và 3b - 7. b) 5 - 2a và 3 - 2b
c) 2a + 3 và 2b + 3. d) 3a - 4 và 3b - 3
Bài 3: a) Chứng minh pt: x² + 6x + 11 = 0 vô nghiệm
b) Chứng minh bất pt: 5x² + 16 ≥ 0 có vô số nghiệm.
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
Cho Tìm số tự nhiên biết .
A= 1 + 5 + 52 + 5 3 + ... + 5800
5A= 5 + 52 + 53 + .... +5 800 + 5801
5A - A = 5801 - 1
4a = 5801 - 1
5801 - 1 +1 = 5n
⇒ 5801 = 5n ⇒ n = 801
cho biểu thức A=5+5^2+5^3+5^4+...+5^224
tìm n sao cho 4A+5=5^(n+1)^2
\(A=5+5^2+5^3+...+5^{224}\)
=>\(5A=5^2+5^3+5^4+...+5^{225}\)
=>\(5A-A=5^2+5^3+...+5^{225}-5-5^2-5^3-...-5^{224}\)
=>\(4\cdot A=5^{225}-5\)
=>\(4A+5=5^{225}\)
=>\(5^{\left(n+1\right)^2}=5^{225}\)
=>\(\left(n+1\right)^2=225\)
=>\(\left[{}\begin{matrix}n+1=15\\n+1=-15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=14\\n=-16\end{matrix}\right.\)