Giải và biện luận phương trình: m(mx + 1) = x(m + 2) + 2 (*) (m là tham số)
giải và biện luận phương trình sau:
a, m(x-1)=5-(m-1)x
b, (m*m-2m)x+5=5m-mx
với m là tham số (m*m là m mũ 2)
giải và biện luận phương trình
2(mx+5) + 5(x+m) = m
( với m là tham số , x là ẩn)
Cho hệ phương trình \(\left\{{}\begin{matrix}x-2y=1\\mx+y=2\end{matrix}\right.\)
giải và biện luận hệ phương trình với m là tham số
• PT có nghiệm duy nhất \( \Leftrightarrow \dfrac{1}{m} \ne \dfrac{-2}{1} \Leftrightarrow m \ne \dfrac{-1}{2}\)
• PT vô nghiệm \(\Leftrightarrow \dfrac{1}{m} =\dfrac{-2}{1} \ne \dfrac{1}{2} \Leftrightarrow m=\dfrac{-1}{2}\)
• PT có vô số nghiệm \(\Leftrightarrow \dfrac{1}{m} = \dfrac{-2}{1} = \dfrac{1}{2} (\text{Vô lý})\)
Vậy....
Giải và biện luận phương trình :
mx2 - 2 = 4x + m (m là tham số , x là ẩn )
\(mx^2-2=4x+m\)
\(\Leftrightarrow mx^2-4x=m+2\)
\(\Leftrightarrow x.\left(mx-4\right)=m+2\)
nếu \(mx-4\ne0\Leftrightarrow m\ne\frac{4}{x}\)\(\Leftrightarrow x\ne\pm1\) thì phương trình trên có 1 nghiệm duy nhất
\(x=\frac{m+2}{mx-4}\)
vậy khi \(m\ne\frac{4}{x}\) thì phương trình đã cho có nghiệm duy nhất \(x=\frac{m+2}{mx-4}\)
+) nếu \(m=\frac{4}{x}\) thì phương trình có dạng \(0x=m+2\) ( pt này có vô số nghiệm )
vậy khi \(m=\frac{4}{x}\)thì pt đã cho có vô số nghiệm
nghiệm tổng quát của phương trình là \(x\in R\)
Tham khảo bài này :
4 bài toán này đều là dạng bài Giải và biện luận PT bậc nhất
Nên cách giải cũng đơn giản thôi, bạn chỉ cần chuyển các PT trên về dạng ax+b=0 là được. Mình sẽ làm thử cho bạn xem nha?
1> PT<=> (m^2+1)x -2m+3=0
Dễ thấy : a=m^2+1# 0 ( với mọi giá trị của m )
Do đó : PT luôn có nghiệm duy nhất x=(2m-3)/(m^2+1)
2> PT có dạng : -m^2 - 3m = -2m + 6
<=> -m^2 - m -6 =0
vô nghiệm với mọi giá trị của m
=> PT đã cho luôn vô nghiệm với mọi giá trị của m
3> PT <=> (m-1)x -m^2-m+2 = 0
TH1 : m-1# 0 <=> m # 1
thì PT luôn có nghiệm duy nhất : x=(m^2+m-2)/(m-1) = m+2
TH2 : m-1=0 <=> m = 1
thì PT có dạng : 0x+0 = 0
=> PT có vô số nghiệm ( hay PT có nghiệm x tùy ý )
Kết luận :
Với m # 1 : PT có nghiệm duy nhất x = m+2
Với m=1 : PT có vô số nghiệm
4> (m^2-3m+2)x -m^2+m = 0
TH1 : m^2-3m+2 = 0 <=> m=1 hoặc m=2
- Nếu m=1 thì PT có dạng : 0x+0=0
=> PT có vô số nghiệm
- Nếu m=2 thì PT có dạng : 0x-2=0
=> PT vô nghiệm
TH2 : m^2-3m+2 # <=> m # 1 và m # 2
thì PT có nghiệm duy nhất x=(m^2-m)/(m^2-3m+2) = m/(m-2)
Kết luận :
Với m=1 : PT có vô số nghiệm
Với m=2 :PT vô nghiệm
Với m # 1 và m # 2 thì PT có nghiệm duy nhất x=m/(m-2)
Sửa đề : \(m^2x+2=m+4x\)
Pt ẩn x : \(m^2x+2=m+4x\)
\(\Leftrightarrow\)\(m^2x-4x=m-2\)
\(\Leftrightarrow\)\(x\left(m^2-4\right)=m-2\)
\(x\left(m-2\right)9m+2=m-2\)
- Nếu \(m^2-4\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
Pt ( 1 ) có nghiệm \(x=\frac{m-2}{\left(m-2\right)\left(m+2\right)}=\frac{1}{m+2}\)
- Nếu \(m-2=0\Leftrightarrow m=2\)
Pt ( 1 0 có dạng 0x = 0 : pt vô nghiệm
- Nếu \(m+2=0\Leftrightarrow m=-2\)
Pt ( 1 ) có dạng 0x = -4 : pt vô nghiệm
Vậy tự kết luận
Chứ nếu mà đúng đề thì \(mx^2-2=4x+m\)
\(\Leftrightarrow\)\(mx^2-4x=m+2\)
\(\Leftrightarrow\)\(x\left(mx-4\right)=m+2\)
vậy thì cạp đất mà ăn à
Giải và biện luận các phương trình sau (với m là tham số):
a) mx – x – m + 2 = 0
\(b) m^2x + 3mx – m^2 + 9 = 0 \)
\(c) m^3x – m^2 - 4 = 4m(x – 1)\)
2) Cho phương trình ẩn x: . Hãy xác định các giá trị của k để phương trình trên có nghiệm x = 2.
\(mx-x-m+2=0\)
\(x\left(m-1\right)=m-2\)
Nếu m=1 ⇒ \(0x=-1\) (vô nghiệm)
Nếu m≠1 ⇒ \(x=\dfrac{m-2}{m-1}\)
Vậy ...
Giải giúp em với ạ:
Cho hệ phương trình: mx + 4y = 10 - m và x + my = 4 (m là tham số)
a, giải hệ phương trình khi m = √2
b, giải và biện luận hệ phương trình theo m
Cô làm câu b thôi nhé :)
Ta có hệ \(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\left(1\right)\\x=4-my\end{cases}}\)
Với \(4-m^2=0\Leftrightarrow m=2\) hoặc \(m=-2\)
Xét m =2, phương trình (1) tương đương 0.x = 0. Vậy hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)
Xét m = -2, phương trình (1) tương đương 0.x = 20. Vậy hệ phương trình vô nghiệm.
Với \(4-m^2\ne0\Leftrightarrow m\ne2\) và \(m\ne-2\), phương trình (1) tương đương \(y=\frac{10-5m}{4-m^2}=\frac{5}{2+m}\)
Từ đó : \(x=\frac{8-m}{2+m}\)
Kết luận:
+ m = 2, hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)
+ m = - 2, hệ phương trình vô nghiệm.
+ \(m\ne2;m\ne-2\) hệ có 1 nghiệm duy nhất \(\hept{\begin{cases}x=\frac{8-m}{2+m}\\y=\frac{5}{2+m}\end{cases}}\)
Chúc em học tập tốt :)
hehe
Hỏi từ lâu nhưng bây giờ em trả lời lại cho vui
Giải và biện luận phương trình sau theo tham số m :
mx-3c+m-2=2m+1
Giải và biện luận phương trình với m là tham số :
\(\frac{x^2+mx+2}{3-x}\)= 2m + 6
Cho hệ phương trình \(|^{mx+2y=1}_{3x+\left(m+1\right)y=-1}\) (với m là tham số)
a) Giải hệ phương trình với m = 3.
b) Giải và biện luận hệ phương trình theo m.
c) Tìm m để hệ phương trình có nghiệm là số nguyên.
cho hệ phương trình:
x+2y=2
mx-y=m(m là tham số)
a) giải và biện luận hệ phương trình đã cho theo m
b) Trong trg hợp hệ phương trình có 1 nghiệm duy nhất.(x,y).Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m