Cho a, b, c dương và a + b + c = 1. CMR: \(2\left(a^3+b^3+c^3\right)+3abc\ge ab+bc+ca\)
giả sử a,b,c là các số thực dương CMR
\(\dfrac{b^2c^3}{a^2\left(b+c\right)^3}+\dfrac{c^2a^3}{b^2\left(a+c\right)^3}+\dfrac{a^2c^3}{c^2\left(a+b\right)^3}\ge\dfrac{9abc}{4\left(3abc+ab^2+bc^2+ca^2\right)}\)
Cho a,b,c dương. Chứng minh
\(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(c+a\right)^2}\ge\dfrac{3\sqrt{3abc\left(a+b+c\right)}.\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)^3}\)
Bài 1 :Cho a,b,c dương thỏa mãn a+b+c=2
CMR \(\frac{bc}{\sqrt{3a^2+4}}+\frac{ca}{\sqrt{3b^2+4}}+\frac{ab}{\sqrt{3c^2+4}}\ge\frac{\sqrt{3}}{3}\)
Bài 2:Cho a,b,c>0. CMR
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
Cho a,b,c là các số thực dương.
CMR \(\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\right)\ge\left(1+ab^2\right)\left(1+bc^2\right)\left(1+ca^2\right)\)
Áp dụng bất đẳng thức Holder ta được:
\(\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left(1+ab^2\right)^3\)
\(\left(1+b^3\right)\left(1+c^3\right)\left(1+c^3\right)\ge\left(1+bc^2\right)^3\)
\(\left(1+c^3\right)\left(1+a^3\right)\left(1+a^3\right)\ge\left(1+ca^2\right)^3\)
Nhân từng vế của 3 bất đẳng thức trên ta được:
\(\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\right)\ge\left(1+ab^2\right)\left(1+bc^2\right)\left(1+ca^2\right)\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
Cho a,b,c là 3 số thực dương thỏa mãn a3+b3+c3=1
CMR\(\frac{a^2+b^2}{ab\left(a+b\right)^3}+\frac{b^2+c^2}{bc\left(b+c\right)^3}+\frac{c^2+a^2}{ca\left(c+a\right)^3}\ge\frac{9}{4}\)
\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
Cho a,b,c là số dương. CMR:
1. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
2. \(a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\le a^3+b^3+c^3\)
3. \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Bài 3:
Áp dụng BĐT Cauchy-Schwarz:
$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{(a+b+c)^2}{b+c+c+a+a+b}=\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
Cho \(a;b;c\ge0.\) Cm:
1) \(a^3+b^3+c^3+3abc\ge ab\sqrt{2\left(a^2+b^2\right)}+bc\sqrt{2\left(b^2+c^2\right)}+ca\sqrt{2\left(c^2+a^2\right)}\)
2) \(a^2+b^2+c^2+ab+bc+ca\ge a\sqrt{2\left(b^2+c^2\right)}+b\sqrt{2\left(c^2+a^2\right)}+c\sqrt{2\left(a^2+b^2\right)}\)
Cho các số thực dương a,b,c. CMR:
\(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\\ \)
Do abc khác 0 nên ta chia cả 2 vế của bđt cho abc. Ta được:
\(\sqrt{\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)}\ge1+\sqrt[3]{\left(1+\frac{bc}{a^2}\right)\left(a+\frac{ca}{b^2}\right)\left(1+\frac{ab}{c^2}\right)}\)
\(\Leftrightarrow\sqrt{3+\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}+\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}}\ge1+\sqrt[3]{\left(1+\frac{bc}{a^2}\right)\left(1+\frac{ca}{b^2}\right)\left(1+\frac{ab}{c^2}\right)}\)
ĐẶT: \(x=\frac{bc}{a^2};y=\frac{ca}{b^2};z=\frac{ab}{c^2}\Rightarrow xyz=1\)
KHI ĐÓ TA CẦN CHỨNG MINH:
\(\sqrt{3+x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge1+\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Leftrightarrow\sqrt{3+x+y+z+xy+yz+zx}\ge1+\sqrt[3]{2+x+y+z+xy+yz+zx}\)
ĐẶT : \(t=\sqrt[3]{2+x+y+z+xy+yz+zx}\)
ÁP DỤNG BĐT AM-GM TA CÓ:
\(x+y+z+xy+yz+zx\ge6\sqrt[6]{xyz.xy.yz.zx}=6\) (DO xyz=1)
\(\Rightarrow t\ge\sqrt[3]{2+6}=2\)
VẬY BẤT ĐẲNG THỨC ĐÃ CHO TƯƠNG ĐƯƠNG VỚI:
\(\sqrt{t^3+1}\ge1+t\Leftrightarrow t^3+1\ge t^2+2t+1\Leftrightarrow t^3-t^2-2t\ge0\Leftrightarrow t\left(t+1\right)\left(t-2\right)\ge0\)
ĐÚNG VỚI : \(t\ge2\)
ĐẲNG THỨC XẢY RA KHI VÀ CHỈ KHI a=b=c
\(\Rightarrow DPCM\)
Do a, b, c là các số thực dương nên abc khác 0
Bất đẳng thức cần chứng minh tương đương với \(\sqrt{\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)}\ge1+\)\(+\sqrt[3]{\left(\frac{a^2}{bc}+1\right)\left(\frac{b^2}{ca}+1\right)\left(\frac{c^2}{ab}+1\right)}\)(Chia cả 2 vế của bất đẳng thức cho abc khác 0)
Đặt \(x=\frac{a}{b};y=\frac{b}{c};z=\frac{c}{a}\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và bất đẳng thức trên trở thành \(\sqrt{\left(xy+yz+zx\right)\left(x+y+z\right)}\ge1+\sqrt[3]{\left(\frac{x}{z}+1\right)\left(\frac{y}{x}+1\right)\left(\frac{z}{y}+1\right)}\)\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz}\ge1+\sqrt[3]{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}}\)\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)+1}\ge1+\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Đặt \(t=\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)suy ra \(t\ge2\). Khi đó ta viết lại bất đẳng thức cần chứng minh thành \(\sqrt{t^3+1}\ge1+t\Leftrightarrow t^3+1\ge t^2+2t+1\Leftrightarrow t\left(t-2\right)\left(t+1\right)\ge0\)
Bất đẳng thức cuối cùng luôn đúng do \(t\ge2\)
Vậy bài toán được chứng minh
Đẳng thức xảy ra khi a = b = c
Cho a,b,c > 0. CMR: (a + b + c)2 \(\ge\) 3(ab + bc + ca)
và \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\ge\frac{10}{3}\)