I=\(lim_{x->1}\frac{\sqrt{x^3-x^2}}{\sqrt{x-1}+1-x}\) Chứng minh I không tồn tại
Tìm giới hạn hàm số
a) \(\text{ }lim_{x->3\frac{\sqrt{2x^2-2x-3}-\sqrt{x^2+2x-6}}{x^2-4x+3}}\)
b)\(lim_{x->1\frac{x^3-x^2+2x-2}{x-1}}\)
c)\(lim_{x->1\frac{x^3-x^2+2x-2}{\sqrt{x}-1}}\)
d)\(lim_{x->2\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}}\)
\(lim_{x->0}\frac{x.sin2x}{1-cos2x}\)
\(lim_{x->0}\frac{\sqrt{1-x}-1}{x}\)
\(lim_{x->0-}\frac{1}{x}\left(\frac{1}{x+1}-1\right)\)
\(lim_{x->0-}\frac{2x+\sqrt{-x}}{5x-\sqrt{-x}}\)
Làm biếng viết đủ, bạn cứ tự hiểu là giới hạn khi x tiến tới gì gì đó nhé
a/ \(lim\frac{2x.sinx.cosx}{2sin^2x}=lim\frac{cosx}{\left(\frac{sinx}{x}\right)}=1\)
b/ \(lim\frac{-x}{x\left(\sqrt{1-x}+1\right)}=lim\frac{-1}{\sqrt{1-x}+1}=-\frac{1}{2}\)
c/ \(=lim\frac{1}{x}\left(\frac{x}{x+1}\right)=lim\frac{1}{x+1}=1\)
d/ \(lim\frac{\sqrt{-x}\left(2\sqrt{-x}+1\right)}{\sqrt{-x}\left(5\sqrt{-x}-1\right)}=lim\frac{2\sqrt{-x}+1}{5\sqrt{-x}-1}=\frac{1}{-1}=-1\)
\(lim_{x->1}\frac{\sqrt[3]{6x-5}-\sqrt{4x-3}}{\left(x-1\right)^2}\)
l\(lim_{x->0}\left(1-x\right)tan\frac{\pi x}{2}\)
Câu dưới là 1 giới hạn hoàn toàn bình thường (không phải dạng vô định), bạn cứ thay số vào là được thôi
\(\lim\limits_{x\rightarrow0}\left(1-x\right)tan\frac{\pi x}{2}=\left(1-0\right).tan0=1\)
giai cau duoi thoi nha
\(lim_{x\rightarrow3}\frac{\sqrt{5x+1}-2\sqrt{7x+4}+4\sqrt[3]{x+5}-x+1}{x^2-3x}\)
Đề bài: Cho biểu thức :
A = \(\left(\frac{x+2}{x\sqrt{x-1}}+\frac{\sqrt{x}}{x+\sqrt{x+1}}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a) Tìm điều kiện xác định.
b) Chứng minh A = \(\frac{2}{x+\sqrt{x}+1}\)
c) Tính giá trị của A tại \(x=8-\sqrt{28}\)
d) Tìm max A.
Giúp em với ạ !
Giải hộ mình mấy bài này với:
1)cho số thực dương a,b,c thỏa mãn a+b+c=1. Chứng minh rằng :
\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
2)Cho 3 số x,y,z khác không thỏa mãn:\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2010\end{cases}}\)
Chứng minh rằng trong 3 số x,y,z luôn tồn tại 2 số đối nhau.
\(Lim_{x\to3}\)\(\frac{2 - \sqrt(x+1)\sqrt[3](x-2)}{2- \sqrt(x-2)\sqrt[3](x+5)}\)
\(lim_{x->1}\frac{\sqrt{6-2x}-\sqrt{x^2+3}}{\left(x-1\right)^2}\)
Dạng 1. Đưa về bất phương trình
Bài 1. Cho B = \(\frac{2\sqrt{x}+1}{\sqrt{x}++1}\) với x ≥ 0. Tìm x để B \(< \frac{3}{2}\)
Bài 2. Cho C = \(\frac{2}{\sqrt{x}-1}\) với x ≥ 0, x ≠ 1. Tìm x để C ≤ 1
Bài 3. Cho D = \(\frac{2\sqrt{x}-4}{x}\) với x > 0. Tìm x để D ≥ \(\frac{1}{4}\)
Bài 4. Cho P = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}\) với x ≥ 0. a) Tìm x để \(\left|P\right|=P\) ; b) Tìm x để \(\left|P\right|=-P\)
Bài 5. Cho Q = \(\frac{3\sqrt{x}}{\sqrt{x}+3}\) với x ≥ 0. Tìm x để :
a) Q2 ≥ Q ; b) Q2 < Q ; c) Q2 - 2Q < 0 ; d) Q < \(\sqrt{Q}\)
Dạng 2. Chứng minh
Bài 1. Cho A = \(\frac{\sqrt{x}}{x+\sqrt{x}+1}\) với x ≥ 0, x ≠ 1. Chứng minh A < \(\frac{1}{3}\)
Bài 2. Cho B = \(\frac{\sqrt{x}+1}{\sqrt{x}+3}\) với x > 0, x ≠ 9. Chứng minh B < \(\frac{1}{3}\)
Bài 3. Cho C = \(\frac{3\sqrt{x}+2}{x+\sqrt{x}+3}\) với x > 0. Chứng minh C ≤ 1.