\(lim_{x->\frac{+}{ }\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}\)
\(lim_{x->1}\frac{\sqrt[3]{8x+11}-\sqrt{x+7}}{x^2-3x+2}\)
\(\lim_{x\to -\infty} ((2x+1)^2+4\sqrt{x^2+4}\sqrt[3]{x^3+3x^2})\)
\(lim_{x\rightarrow1^-}\frac{\sqrt{x^2-x+3}}{2\left|x\right|-1}\)
\(lim_{x\rightarrow2^+}\frac{3}{x-2}\sqrt{\frac{x+4}{4-x}}\)
\(lim_{x\rightarrow0}\dfrac{\sqrt{x^3+1}-1}{x^2+x}\)
a. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-1}{2x}\) f. \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7-3}}{2-\sqrt{x+3}}\)
b. \(\lim\limits_{x\rightarrow0}\frac{4x}{\sqrt{9+x}-3}\) g. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)
c. \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}\) h. \(\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}\)
d. \(\lim\limits_{x\rightarrow1}\frac{3x-2\sqrt{4x^2-x-2}}{x^2-3x+2}\) k. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}\)
e. \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}\)
giới hạn \(lim_{x\rightarrow3^+}\left(x-3\right)\sqrt{\frac{x+1}{x^2-9}}\) thuộc dạng nào ?
a,\(^{lim}_{x->2}\frac{\sqrt[3]{8x+11}-\sqrt{x+7}}{x^2-3x+2}\)
b, \(^{lim}_{x->0}\frac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
c, \(^{lim}_{x->1}\frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}\)
d,\(^{lim}_{x->0}\frac{\sqrt{1+2x}.\sqrt[3]{1+4x}-1}{x}\)
e,\(^{lim}_{x->1}\frac{x^4-1}{x^3-2x^2+x}\)
f,\(^{lim}_{x->1}\left(\frac{1}{1-x}-\frac{3}{1-x^3}\right)\)