Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khoi Tran
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 2 2020 lúc 19:49

Giới hạn này tiến đến đâu vậy bạn? 2 trường hợp khác nhau đúng ko?

\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}=\lim\limits_{x\rightarrow+\infty}\frac{x\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=1\)

\(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}=\lim\limits_{x\rightarrow-\infty}\frac{\left|x\right|\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=\lim\limits_{x\rightarrow-\infty}\frac{-x\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=-1\)

Khách vãng lai đã xóa
Ngan Nguyen Thi Kim
Xem chi tiết
Cấm khóa nick
18 tháng 4 2020 lúc 15:57

kékduhchchdjjdj

Khách vãng lai đã xóa
Lâm Tố Như
Xem chi tiết
Akai Haruma
20 tháng 3 2020 lúc 19:00

Lời giải:

\(\lim\limits_{x\to \pm\infty}\sqrt{x^2-3x+4}=\lim\limits_{x\to \pm\infty}\sqrt{x^2}.\lim\limits_{x\to \pm \infty}\sqrt{1-\frac{3}{x}+\frac{4}{x^2}}=\lim\limits_{x\to \pm\infty}|x|.1=+\infty \)

--------------

\(\lim\limits_{x\to +\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to +\infty}x^2.\lim\limits_{x\to +\infty}(\sqrt{1+\frac{5}{x^2}}+1)=2(+\infty )=+\infty \)

\(\lim\limits_{x\to -\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to -\infty}\frac{5x}{\sqrt{x^2+5}-x}=\lim\limits_{x\to -\infty}\frac{-5}{\sqrt{1+\frac{5}{x^2}}+1}=\frac{-5}{2}\)

----------------

\(\lim\limits_{x\to 2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}=\lim\limits_{x\to -\infty}(\sqrt{x+285}-48).\lim\limits_{x\to -\infty}\frac{1}{\sqrt{x-2018}-\sqrt{2020-x}}\)

\(=\lim\limits_{x\to 2019}\frac{x-2019}{\sqrt{x+285}+48}.\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(x-2019)}=\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(\sqrt{x+285}+48)}=\frac{1}{96}\)

Khách vãng lai đã xóa
Akai Haruma
16 tháng 3 2020 lúc 14:52

Lời giải:

\(\lim\limits_{x\to \pm\infty}\sqrt{x^2-3x+4}=\lim\limits_{x\to \pm\infty}\sqrt{x^2}.\lim\limits_{x\to \pm \infty}\sqrt{1-\frac{3}{x}+\frac{4}{x^2}}=\lim\limits_{x\to \pm\infty}|x|.1=+\infty \)

--------------

\(\lim\limits_{x\to +\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to +\infty}x^2.\lim\limits_{x\to +\infty}(\sqrt{1+\frac{5}{x^2}}+1)=2(+\infty )=+\infty \)

\(\lim\limits_{x\to -\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to -\infty}\frac{5x}{\sqrt{x^2+5}-x}=\lim\limits_{x\to -\infty}\frac{-5}{\sqrt{1+\frac{5}{x^2}}+1}=\frac{-5}{2}\)

----------------

\(\lim\limits_{x\to 2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}=\lim\limits_{x\to -\infty}(\sqrt{x+285}-48).\lim\limits_{x\to -\infty}\frac{1}{\sqrt{x-2018}-\sqrt{2020-x}}\)

\(=\lim\limits_{x\to 2019}\frac{x-2019}{\sqrt{x+285}+48}.\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(x-2019)}=\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(\sqrt{x+285}+48)}=\frac{1}{96}\)

Khách vãng lai đã xóa
Ngtong Nguyen
Xem chi tiết
Bùi Chí Minh
Xem chi tiết
Phuong Huong
28 tháng 2 2020 lúc 8:23
https://i.imgur.com/v6W1QWU.jpg
Khách vãng lai đã xóa
Bùi Chí Minh
28 tháng 2 2020 lúc 17:12

ai giup voi

Khách vãng lai đã xóa
Bùi Chí Minh
28 tháng 2 2020 lúc 17:12

@nguyenvietlam

Khách vãng lai đã xóa
Lâm Tố Như
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2020 lúc 11:56

Câu dưới là 1 giới hạn hoàn toàn bình thường (không phải dạng vô định), bạn cứ thay số vào là được thôi

\(\lim\limits_{x\rightarrow0}\left(1-x\right)tan\frac{\pi x}{2}=\left(1-0\right).tan0=1\)

Khách vãng lai đã xóa
Lâm Tố Như
29 tháng 2 2020 lúc 22:14

giai cau duoi thoi nha

Khách vãng lai đã xóa
Tiểu Thang Viên (bánh tr...
Xem chi tiết
mạc trần
Xem chi tiết
Bestzata
27 tháng 10 2020 lúc 16:36

Để \(\sqrt{x}\) xác định

 \(\Leftrightarrow x\ge0\)

\(\Leftrightarrow-7x\le0\)

\(\Rightarrow\sqrt{-7x}\)không tồn tại 

\(\Leftrightarrow\frac{8x}{4x\sqrt{x-8x}}\)không tồn tại

=> A không tồn tại 

Khách vãng lai đã xóa