\(lim_{x->1}\frac{\sqrt[3]{8x+11}-\sqrt{x+7}}{x^2-3x+2}\)
\(lim_{x\rightarrow3}\frac{\sqrt{5x+1}-2\sqrt{7x+4}+4\sqrt[3]{x+5}-x+1}{x^2-3x}\)
\(lim_{x->\frac{+}{ }\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}\)
Giới hạn này tiến đến đâu vậy bạn? 2 trường hợp khác nhau đúng ko?
\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}=\lim\limits_{x\rightarrow+\infty}\frac{x\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=1\)
\(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}=\lim\limits_{x\rightarrow-\infty}\frac{\left|x\right|\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=\lim\limits_{x\rightarrow-\infty}\frac{-x\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=-1\)
Tìm giới hạn hàm số
a) \(\text{ }lim_{x->3\frac{\sqrt{2x^2-2x-3}-\sqrt{x^2+2x-6}}{x^2-4x+3}}\)
b)\(lim_{x->1\frac{x^3-x^2+2x-2}{x-1}}\)
c)\(lim_{x->1\frac{x^3-x^2+2x-2}{\sqrt{x}-1}}\)
d)\(lim_{x->2\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}}\)
\(lim_{x->\pm\infty}\sqrt{x^2-3x+4}\)
\(lim_{x->\pm\infty}x\left(\sqrt{x^2+5}+x\right)\)
\(lim_{x->2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}\)
Lời giải:
\(\lim\limits_{x\to \pm\infty}\sqrt{x^2-3x+4}=\lim\limits_{x\to \pm\infty}\sqrt{x^2}.\lim\limits_{x\to \pm \infty}\sqrt{1-\frac{3}{x}+\frac{4}{x^2}}=\lim\limits_{x\to \pm\infty}|x|.1=+\infty \)
--------------
\(\lim\limits_{x\to +\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to +\infty}x^2.\lim\limits_{x\to +\infty}(\sqrt{1+\frac{5}{x^2}}+1)=2(+\infty )=+\infty \)
\(\lim\limits_{x\to -\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to -\infty}\frac{5x}{\sqrt{x^2+5}-x}=\lim\limits_{x\to -\infty}\frac{-5}{\sqrt{1+\frac{5}{x^2}}+1}=\frac{-5}{2}\)
----------------
\(\lim\limits_{x\to 2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}=\lim\limits_{x\to -\infty}(\sqrt{x+285}-48).\lim\limits_{x\to -\infty}\frac{1}{\sqrt{x-2018}-\sqrt{2020-x}}\)
\(=\lim\limits_{x\to 2019}\frac{x-2019}{\sqrt{x+285}+48}.\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(x-2019)}=\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(\sqrt{x+285}+48)}=\frac{1}{96}\)
Lời giải:
\(\lim\limits_{x\to \pm\infty}\sqrt{x^2-3x+4}=\lim\limits_{x\to \pm\infty}\sqrt{x^2}.\lim\limits_{x\to \pm \infty}\sqrt{1-\frac{3}{x}+\frac{4}{x^2}}=\lim\limits_{x\to \pm\infty}|x|.1=+\infty \)
--------------
\(\lim\limits_{x\to +\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to +\infty}x^2.\lim\limits_{x\to +\infty}(\sqrt{1+\frac{5}{x^2}}+1)=2(+\infty )=+\infty \)
\(\lim\limits_{x\to -\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to -\infty}\frac{5x}{\sqrt{x^2+5}-x}=\lim\limits_{x\to -\infty}\frac{-5}{\sqrt{1+\frac{5}{x^2}}+1}=\frac{-5}{2}\)
----------------
\(\lim\limits_{x\to 2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}=\lim\limits_{x\to -\infty}(\sqrt{x+285}-48).\lim\limits_{x\to -\infty}\frac{1}{\sqrt{x-2018}-\sqrt{2020-x}}\)
\(=\lim\limits_{x\to 2019}\frac{x-2019}{\sqrt{x+285}+48}.\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(x-2019)}=\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(\sqrt{x+285}+48)}=\frac{1}{96}\)
\(\lim_{x\to -\infty} ((2x+1)^2+4\sqrt{x^2+4}\sqrt[3]{x^3+3x^2})\)
a,\(^{lim}_{x->2}\frac{\sqrt[3]{8x+11}-\sqrt{x+7}}{x^2-3x+2}\)
b, \(^{lim}_{x->0}\frac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
c, \(^{lim}_{x->1}\frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}\)
d,\(^{lim}_{x->0}\frac{\sqrt{1+2x}.\sqrt[3]{1+4x}-1}{x}\)
e,\(^{lim}_{x->1}\frac{x^4-1}{x^3-2x^2+x}\)
f,\(^{lim}_{x->1}\left(\frac{1}{1-x}-\frac{3}{1-x^3}\right)\)
\(lim_{x->1}\frac{\sqrt[3]{6x-5}-\sqrt{4x-3}}{\left(x-1\right)^2}\)
l\(lim_{x->0}\left(1-x\right)tan\frac{\pi x}{2}\)
Câu dưới là 1 giới hạn hoàn toàn bình thường (không phải dạng vô định), bạn cứ thay số vào là được thôi
\(\lim\limits_{x\rightarrow0}\left(1-x\right)tan\frac{\pi x}{2}=\left(1-0\right).tan0=1\)
giai cau duoi thoi nha
\(lim_{x->a}\left[\dfrac{1}{\left(x-a\right)^2}\left(x^2-8x+10+\dfrac{81}{x+2\sqrt{x-1}}-2\sqrt{x-1}\right)\right]=\dfrac{21}{16}\)
\(lim_{x->b}\left[\dfrac{4}{\left(x-b\right)^2}\left(x^2-x+2-2\sqrt{x}\right)\right]=c\)
với a,b,c là các số thực. Tìm a,b,c
RÚT GỌN A=\(\frac{\sqrt{x}+3}{6+5\sqrt{x}+6}:\left(\frac{8x}{4x\sqrt{x-8x}}-\frac{3\sqrt{x}}{3x-12}-\frac{1}{\sqrt{x}+2}\right)\)
Để \(\sqrt{x}\) xác định
\(\Leftrightarrow x\ge0\)
\(\Leftrightarrow-7x\le0\)
\(\Rightarrow\sqrt{-7x}\)không tồn tại
\(\Leftrightarrow\frac{8x}{4x\sqrt{x-8x}}\)không tồn tại
=> A không tồn tại