Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
MyNameNhii
Xem chi tiết
Akai Haruma
19 tháng 4 2021 lúc 2:36

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Leftrightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}=\frac{(\frac{3}{2})^2}{3}=\frac{3}{4}$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{2}$.

 

Trương Thị Hải Anh
Xem chi tiết
Nguyễn Thành Trương
6 tháng 9 2019 lúc 20:23

Áp dụng BĐT Holder:
$(a^4+b^4+c^4)^3.(1+1+1)\geq (a^3+b^3+c^3)^4 \geq (a^3+b^3+c^3)^3.\dfrac{(a+b+c)^3}{9}$
$=3(a^3+b^3+c^3)^3$
$\Rightarrow a^4+b^4+c^4\geq a^3+b^3+c^3$

Ngọc Hạnh Nguyễn
Xem chi tiết
Thắng Nguyễn
7 tháng 3 2018 lúc 18:23

\(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge2018\)

\(\Leftrightarrow\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge a+b+c\)

\(\LeftrightarrowΣ_{cyc}\frac{a^3\left(a-c\right)+b^3\left(b-c\right)}{a^3+b^3}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(a-b\right)\left(\frac{a^3}{c^3+a^3}-\frac{b^3}{b^3+c^3}\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\frac{c^3\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)\left(b+c\right)\left(b^2-bc+c^2\right)}\right)\ge0\)

BĐT cuối cùng liếc qua cũng biết thừa đúng :) nên ta có ĐPCM

Dấu "=" <=> a=b=c 

Ủng hô va` kb với mình nhé ^^

alibaba nguyễn
7 tháng 3 2018 lúc 13:23

Bài này làm dài lắm

Nguyễn Hưng Phát
Xem chi tiết
Nguyễn Thu Hiền
22 tháng 11 2017 lúc 19:18

Mk cx đang định hỏi câu này

Trang-g Seola-a
Xem chi tiết
tth_new
26 tháng 5 2019 lúc 16:18

Note: Em không chắc.Rất mong được mọi người góp ý ạ,em chưa biết cách dùng sos nên đành dùng cách khác ạ.

BĐT \(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge a^{ 4}+b^4+c^4+ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)-ab\left(a^2+b^2\right)-bc\left(b^2+c^2\right)-ca\left(c^2+a^2\right)\ge0\)  (*)

Dễ thấy BĐT trên là hệ quả của BĐT sau: \(a^4-ab\left(a^2+b^2\right)+b^4\ge0\) (1)

\(\Leftrightarrow a^4+b^4\ge ab\left(a^2+b^2\right)\)(2). Theo BĐT Cauchy-Schwarz dạng Engel,ta có:

\(VT=\frac{\left(a^2\right)^2}{1}+\frac{\left(b^2\right)^2}{1}\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\)

Ta luôn có \(\left(a-b\right)^2\ge0\forall a,b\inℝ\Rightarrow a^2+b^2\ge2ab\)

Suy ra: \(VT=a^4+b^4\ge\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\ge\frac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)=VP\)

Do vậy BĐT (2) đúng suy ra BĐT (1) đúng (do 2 BĐT này tương đương nhau)

Tương tự với hai BĐT còn lại ta cũng có: \(b^4-bc\left(b^2+c^2\right)+c^4\ge0\);

\(c^4-ca\left(c^2+a^2\right)+a^4\ge0\). Cộng theo vế 3 BĐT trên suy ra (*) đúng hay ta có Q.E.D

alibaba nguyễn
26 tháng 9 2018 lúc 15:55

\(2a^4+a+2b^4+b+2c^4+c\ge3\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)\ge3\left(a^3+b^3+c^3\right)-3\)

\(=2\left(a^3+b^3+c^3\right)+a^3+1+1+b^3+1+1+c^3+1+1-9\)

\(\ge2\left(a^3+b^3+c^3\right)+3\left(a+b+c\right)-9=2\left(a^3+b^3+c^3\right)\)

\(\Rightarrow a^4+b^4+c^4\ge a^3+b^3+c^3\)

๖ۣۜØʑąωą кเşşッ
2 tháng 1 2019 lúc 21:15

bạn vào trang cá nhân của mình đánh giá 5 sao nha. Mình cho lại các bạn 5 sao == mk xin mà. Mình sẽ giúp bạn giải hết bài tập nha nếu mình giải được 5sao

chơi nro ko

^"_^

nguyenhuuhoangthinh
Xem chi tiết
tth_new
4 tháng 8 2020 lúc 20:30

Vào thống kê hỏi đáp xem nhé. Bài này chỉ cần biểu diễn dưới dạng tổng bình phương là xong.

Khách vãng lai đã xóa
Tran Le Khanh Linh
4 tháng 8 2020 lúc 20:31

ta có \(\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}\ge\frac{3}{4}\) (***)

do ab+bc+ca=3 nên

VT (***)=\(\frac{a^3}{b^2+ab+bc+ca}+\frac{b^3}{c^2+ab+bc+ca}+\frac{c^3}{a^2+ab+bc+ca}\)

\(=\frac{a^3}{\left(b+c\right)\left(a+b\right)}+\frac{b^3}{\left(c+a\right)\left(b+c\right)}+\frac{c^3}{\left(a+b\right)\left(c+a\right)}\)

áp dụng bđt AM-GM ta có \(\frac{a^3}{\left(b+c\right)\left(c+a\right)}+\frac{b+c}{8}+\frac{a+b}{8}\ge\frac{3a}{4}\)

\(\Rightarrow\frac{a^3}{\left(b+c\right)\left(c+a\right)}\ge\frac{5a-2b-c}{8}\left(1\right)\)

chứng minh tương tự ta cũng được

\(\hept{\begin{cases}\frac{b^3}{\left(c+a\right)\left(a+b\right)}\ge\frac{5b-2c-a}{8}\left(2\right)\\\frac{c^3}{\left(a+b\right)\left(c+a\right)}\ge\frac{5c-2a-b}{8}\left(3\right)\end{cases}}\)

cộng theo vế với vế của (1),(2) và (3) ta được VT (***) \(\ge\frac{a+b+c}{4}\)

mặt khác ta dễ dàng chứng minh được \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)

đẳng thức xảy ra khi a=b=c=1 (đpcm)

Khách vãng lai đã xóa
nguyenhuuhoangthinh
4 tháng 8 2020 lúc 20:48

ok cảm ơn bạn nha :)

Khách vãng lai đã xóa
sakura
Xem chi tiết
Phùng Minh Quân
28 tháng 8 2019 lúc 18:17

\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

Natsu Dragneel
Xem chi tiết
Lương Kojiro
Xem chi tiết
tth_new
2 tháng 1 2020 lúc 6:34

Giả sử \(c=max\left\{a,b,c\right\}\)

BĐT \(\Leftrightarrow a^4+b^4+c^4\ge\frac{a+b+c}{3}\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(VT-VP=\frac{1}{8}\left[\left(b+c-2a\right)^2\left\{3a^2+\left(a+b+c\right)^2\right\}+3\left(5b^2+6bc+5c^2-2ab-2ac\right)\right]\ge0\)

Khách vãng lai đã xóa