Áp dụng BĐT đúng cho mọi số thực \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
\(a^4+b^4+c^4\ge\frac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\frac{1}{27}\left(a+b+c\right)^4=3\)
\(\Rightarrow4\left(a^4+b^4+c^4\right)\ge3\left(a^4+b^4+c^4\right)+3\) (1)
Mặt khác: \(a^4+a^4+a^4+1\ge4\left|a^3\right|\ge4a^3\)
Tương tự và cộng lại: \(3\left(a^4+b^4+c^4\right)+3\ge4\left(a^3+b^3+c^3\right)\) (2)
(1);(2) \(\Rightarrow4\left(a^4+b^4+c^4\right)\ge4\left(a^3+b^3+c^3\right)\)