xét ba số thực a,b,c thỏa mãn 0 ≤ a,b,c ≤ 2 và a+b+c = 3. Tìm giá trị nhỏ nhất của biểu thức : P = a3+ b3+ c3 + \(\dfrac{\left(ab+bc+ca\right)^3+8}{ab+bc+ca}\)
Cho 3 số nguyên dương a, b, c thỏa mãn a3 + b3 + c3 chia hết cho 14
CMR abc cũng chia hết cho 14
Chứng minh: 1/(1+a3) + 1/(1+b3) + 1/(1+c3) lớn hơn hoặc bằng 3/(1+abc)
Chú thích: a3: a mũ 3; b3: b mũ 3; c3: c mũ 3.
Cho 3 số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=3\). Chứng minh rằng: \(a^5+b^5+c^5\ge3\)
Cho 3 số thực dương thỏa mãn: \(a^3b^3 +b^3c^3+c^3a^3=3\). Chứng minh rằng: \(a^7+b^7+c^7\ge3\)
Cho a, b, c là các số thực dương thỏa mãn: a+b+c+ab+bc+ac=6. Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)
cho ba số thực thỏa mãm a+b+c =3 chứng minh rằng \(a^4+b^4+c^4\ge a^3+b^3+c^3\)
Bài 1: Cho a > 0, b > 0. Chứng minh rằng:
a/√b + b/√a >= √a + √b
Bài 2: Cho a, b, c là các đô dài của các cạnh tam giác và p là nửa chu vi. Chứng minh rằng:
(p - a)(p - b) <= c^2/4
Bài 3:Chứng minh rằng với mọi số thực a ta có:3(a^4+a^2+1)>=(a^2+a+1)^2
Bài 4:Cho 3 số thực dương a,b,c.chứng minh rằng:(1+a/b)(1+b/c)(1+c/a)>=8
Bài 5:Cho a,b là hai số dương. Chứng minh:a^2+b^2+1/a++1/b>=2(√a+√b)
Bài 6:Cho ba số dương a,b,c. Chứng minh rằng:ab/(a+b)+bc/(b+c)+ca/(c+a)<=(a+b+c)/2
Bài 7:Cho ba số thực dương a,b,c thỏa mãn:ab+bc+ca=3. Chứng minh rằng:
a^3/(b^2+3)+b^3/(c^2+3)+c^3/(a^2+3)>=3/4
bài 8:Tìm giá trị nhỏ nhất của hàm số f(x)=x+3/(x-2) với x>2
cho a3+b3+c3=3abc. Tính A=(1+1/a)*(1+1/b)*(1+1/c)