Giải phương trình nghiệm nguyên dương: \(2x+1=y\left(x^2+x+1\right)\)
Giải phương trình nghiệm nguyên dương
\(\left(1+x\right)\left(y+z\right)=xyz+2\)
\(\left(1+x\right)\left(y+z\right)=xyz+2\)
\(\Leftrightarrow\)\(xy+xz+y+z=xyz+2\)
\(\Leftrightarrow\)\(xyz-xy-xz+x=y+z-2+x\)
\(\Leftrightarrow\)\(x\left(yz-y-z+1\right)=x+y+z-2\)
\(\Leftrightarrow\)\(x\left(y-1\right)\left(z-1\right)=x+\left(y-1\right)+\left(z-1\right)\)
Đặt \(a=x;b=y-1;c=z-1\) pt \(\Leftrightarrow\)\(abc=a+b+c\)
Ta có : \(a\ge1;b\ge0;c\ge0\) ( do \(x,y,z\ge1\) )
Giả sử \(b=0\) pt \(\Leftrightarrow\)\(a+c=0\) ( vô lí vì \(a+c\ge1\) )
Tương tự, giả sử \(c=0\) pt \(\Leftrightarrow\)\(a+b=0\) ( vô lí vì \(a+b\ge1\) )
\(\Rightarrow\)\(a,b,c\ge1\) và \(abc=a+b+c\)
Đến đây giả sử \(a\ge b\ge c\) đc r vì a, b, c có vai trò như nhau
Giải r nhưng quên link, có j e ib gửi link khác cho :))
Chúc a học tốt ~
cảm ơn e nhé, alibaba nguyễn cx giúp anh r
Giải phương trình nghiệm nguyên: \(x^2y^2\left(x+y\right)+x=2+y\left(x+1\right)\).
Giải phương trình sau với nghiệm nguyên dương:
\(3^x=\left(y+1\right)^2\)
lớp 6 mà giải phương trình đâu ra vậy cha
Giải phương trình nghiệm nguyên không âm: \(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25
↔x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0
↔(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0
↔(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0→[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4
Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)
ta có bảng:
x+1 1 5 -1 -5
y+1 -5 -1 5 1
x 0 4 -2 -6
y -6 -2 4 0
→(x,y)ϵ{(0;−6),(4;−2)...}
\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)
\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)
\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)
\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)
nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\)
( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )
ta lập bảng :
\(x+1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+1\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(x\) | \(0\) | \(4\) | \(-2\) | \(-6\) |
\(y\) | \(-6\) | \(-2\) | \(4\) | \(0\) |
\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)
Bài 1: Giải hệ phương trình sau
\(\left\{{}\begin{matrix}\dfrac{1}{2x-y}+\left(x+3y\right)=\dfrac{3}{2}\\\dfrac{4}{2x-y}-5\left(x+3y\right)=-2\end{matrix}\right.\)
Bài 2: Cho phương trình: x\(^2\)+(m-1)x-m\(^2\)-2=0
a) CMR: phương trình luôn có 2 nghiệm phân biệt \(\forall\)m
b) Tìm m để biểu thức A=\(\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3\) đạt giá trị lớn nhất.
Bài 2:
a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)
\(=5m^2-2m+9>0\forall m\)
Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m
Bài 1:
ĐKXĐ \(2x\ne y\)
Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)
HPT trở thành
\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)
Giải phương trình nghiệm nguyên dương: \(2\left(x+y+z\right)=xyz\)
Mong mọi người giúp
Giải chi tiết hộ mk
1.Tổng bình phương các nghiệm nguyên của phương trình \(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
2.Tích các nghiệm của phương trình \(5\sqrt{x^3+1}=2\left(x^2+2\right)\)
Cảm ơn nhìu.
1/ nhân 4 cả 2 vế lên, vế trái sẽ trở thành (2x+1)(2x+2)^2(2x+3), nhân 2x+1 với 2x+3, cái bình phương phân tích ra
thành (4x^2+8x+3)(4x^2+8x+4)=72
đặt 4x^2+8x+4=a \(\left(a\ge0\right)\)
thay vào ta có (a-1)a=72 rồi bạn phân tích thành nhân tử sẽ có nghiệm là 9 và -8 loại được -8 thì nghiệm của a là 9
suy ra 2x+1=3 hoặc -3, tính ra được x rồi nhân vào với nhau
2/\(\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left[\left(x+1\right)+\left(x^2-x+1\right)\right]\)
đặt căn x+1=a, căn x^2-x+1=b (a,b>=0)
thay vào ra là \(2a^2-5ab+2b^2=0\\
\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
suy ra a=2b hoặc b=2a, thay cái kia vào bình phương lên giải nốt phương trình rồi nhân nghiệm với nhau
Nghiệm nguyên.
2x+3=(2x+1)+2
\(\left(1\right)\Leftrightarrow\left[\left(2x+1\right)\left(x+1\right)\right]^2+2\left(2x+1\right)\left(x+1\right)^2=18\\ \)
2x+1 luôn lẻ---> x+1 phải chẵn --> x phải lẻ---> x=2n-1
\(\left(4n+3\right)\left(2n\right)^2\left(4n+1\right)=18\)
18 không chia hết co 4 vậy vô nghiệm nguyên.
Viết diễn dải dài suy luận logic rất nhanh
câu 2.
\(2\left(x^2+2\right)>0\forall x\) thực tế >=4 không cần vì mình cần so sánh với 0
\(\left(2\right)\Leftrightarrow25\left(x^3+1\right)=4\left(x^2+2\right)^2\)
Vậy đáp số là (16-25)/4=-9/4
giải phương trình nghiệm nguyên \(\left(x+y\right)^2=\left(x-1\right)\left(y-1\right)\)
Tìm nghiệm nguyên dương của phương trình :\(x\left(x+2y\right)^3-y\left(y+2x\right)^3=27\)
Ta có: \(x\left(x+2y\right)^3-y\left(y+2x\right)^3=27\)
\(\Leftrightarrow x\left(x^3+6x^2y+12xy^2+8y^3\right)-y\left(y^3+6xy^2+12x^2y+8x^3\right)=27\)
\(\Leftrightarrow x^4+6x^3y+12x^2y^2+8xy^3-y^4-6xy^3-12x^2y^2-8x^3y=27\)
\(\Leftrightarrow\left(x^4-y^4\right)-2x^3y+2xy^3=27\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)-2xy\left(x^2-y^2\right)=27\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2-2xy+y^2\right)=27\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^3=27\)
Vì x , y > 0 => \(x+y>0\Rightarrow\left(x-y\right)^3>0\Rightarrow x>y\)
Khi đó: \(\left(x-y\right)^3\in\left\{1;8;27\right\}\Rightarrow x-y\in\left\{1;2;3\right\}\)
Nếu \(\left(x-y\right)^3=1\Rightarrow\hept{\begin{cases}x-y=1\\x+y=27\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=13\end{cases}}\)
Nếu \(\left(x-y\right)^3=8\Rightarrow\hept{\begin{cases}x-y=2\\x+y=\frac{27}{8}\end{cases}\left(ktm\right)}\)
Nếu \(\left(x-y\right)^3=27\Rightarrow\hept{\begin{cases}x-y=3\\x+y=1\end{cases}}\left(ktm\right)\)
Vậy x = 14 , y = 13
Cho bất phương trình \(8^x+3x4^x+\left(3x^2+2\right)2^x\le\left(m^3-1\right)x^3+2\left(m-1\right)x\). Số các giá trị nguyên của tham số m để phương trình trên có đúng năm nghiệm nguyên dương phân biệt là?
Giải thích cho mình dòng bôi vàng ở dưới, mình cảm ơn nhiều ạ♥