cho a,b,c là các số thực không âm t/m \(a+b+c=1\) cmr
\(2\left(a^3+b^3+c^3\right)+3abc\ge a^2+b^2+c^2\)
Cho a, b, c là số đo ba cạnh tam giác. CMR: \(a^3+b^3+c^3+3abc\ge a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
giả sử a,b,c là các số thực dương CMR
\(\dfrac{b^2c^3}{a^2\left(b+c\right)^3}+\dfrac{c^2a^3}{b^2\left(a+c\right)^3}+\dfrac{a^2c^3}{c^2\left(a+b\right)^3}\ge\dfrac{9abc}{4\left(3abc+ab^2+bc^2+ca^2\right)}\)
cho a; b ; c là các số thực không âm có a+b+c=1 c/m rằng:
2(a^3+b^3+c^3)+3abc lớn hơn hoạc bằng a^2+b^2+c^2
Ta có a2 - (b - c)2 <= a2
<=>(a+b-c)(a-b+c) <= a2
Tương tự
(b-c+a)(b-a+c) <= b2
(c-a+b)(c-b+a) <= c2
Từ đó ta có (b-c+a)2(b-a+c)2(c-b+a)2 <= a2 b2 c2
<=> (c-b+a)(b-c+a)(b-a+c) <= abc (nhân vô chuyển vế nha)
<=> (a2 b + a2 c) + (b2 a + b2 c) + (c2 a + c2 b) <= a3 + b3 + c3 + 3abc
<=> a2 (a+b+c) + b2 (a+b+c) + c2 (a+b+c) <= 2(a3 + b3 + c3) + 3abc ( cộng 2 vế cho
Ta có a2 - (b - c)2 <= a2
<=>(a+b-c)(a-b+c) <= a2
Tương tự
(b-c+a)(b-a+c) <= b2
(c-a+b)(c-b+a) <= c2
Từ đó ta có (b-c+a)2(b-a+c)2(c-b+a)2 <= a2 b2 c2
<=> (c-b+a)(b-c+a)(b-a+c) <= abc
<=> (a2 b + a2 c) + (b2 a + b2 c) + (c2 a + c2 b) <= a3 + b3 + c3 + 3abc
<=> a2 (a+b+c) + b2 (a+b+c) + c2 (a+b+c) <= 2(a3 + b3 + c3) + 3abc (cộng 2 vế cho a3 + b3 + c3)
<=> a2 + b2 + c2 <= 2(a3 + b3 + c3 ) + 3abc
Xong
Cho các số thực không âm bất kì a,b,c. CMR:
\(abc+2+\frac{1}{\sqrt{2}}\left[\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\right]\ge a+b+c\)
cho a,b,c là các số thực ko âm , a+b+c=3
cmr \(\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3\ge\frac{3}{4}\)
Trời sẽ phù hộ cho bạn giải được bài này. Mình sẽ cầu nguyện giúp bạn :3
Cmr: \(\left(a^3+b^3+c^3-3abc\right)^2\le\left(a^2+b^2+c^2\right)^3\) với mọi số thực a,b,c.
Do \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Nên BĐT tương đương:
\(\left(a+b+c\right)^2\left(a^2+b^2+c^2-ab-bc-ca\right)^2\le\left(a^2+b^2+c^2\right)^3\)
Đặt \(\left\{{}\begin{matrix}a^2+b^2+c^2=x\\ab+bc+ca=y\end{matrix}\right.\) với \(\left\{{}\begin{matrix}x\ge0\\x\ge y\end{matrix}\right.\)
BĐT tương đương:
\(\left(x+2y\right)\left(x-y\right)^2\le x^3\)
\(\Leftrightarrow x^3-3xy^2+2y^3\le x^3\)
\(\Leftrightarrow y^2\left(3x-2y\right)\ge0\)
Hiển nhiên đúng do \(3x-2y=x+2\left(x-y\right)\ge0\)
Đẳng thức xảy ra khi và chỉ khi \(ab+bc+ca=0\)
Cho a,b,c,d là các số thực không âm thỏa \(a^2+b^2+c^2+d^2=4\). CMR:
\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{\sqrt{2}}\sqrt{2+ab+ac+ad+bc+bd+dc}\)
BĐT cần c/m tương đương:
\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{4+2\left(ab+ac+ad+bc+bd+cd\right)}\)
\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{\left(a+b+c+d\right)^2}\)
\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\left(a+b+c+d\right)\)
\(\Leftrightarrow4\left(a^3+b^3+c^3+d^3\right)\ge4+3\left(a+b+c+d\right)\)
Dễ dàng chứng minh điều này bằng AM-GM:
\(a^3+a^3+1+b^3+b^3+1+c^3+c^3+1+d^3+d^3+1\ge3a^2+3b^2+3c^2+3d^2\)
\(\Rightarrow2\left(a^3+b^3+c^3+d^3\right)+4\ge12\)
\(\Rightarrow a^3+b^3+c^3+d^3\ge4\) (1)
Lại có:
\(a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\left(a+b+c+d\right)^2\)
\(\Rightarrow a+b+c+d\le4\) (2)
(1);(2) \(\Rightarrow4\left(a^3+b^3+c^3+d^3\right)\ge16\ge4+3.4\ge4+3\left(a+b+c+d\right)\) (đpcm)
Cho a,b,c là các số thực dương. CMR
\(\sqrt{a^2+\left(1-b\right)^2}+\sqrt{b^2+\left(1-c\right)^2}+\sqrt{c^2+\left(1-b\right)^2}\ge\frac{3\sqrt{2}}{2}\)
Áp dụng BĐT Mincopski ta có:
\(VT=\sqrt{a^2+\left(1-b\right)^2}+\sqrt{b^2+\left(1-c\right)^2}+\sqrt{c^2+\left(1-b\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(3-a-b-c\right)^2}\)
Đặt \(a+b+c=x>0\) thì ta có:
\(\ge\sqrt{x^2+\left(3-x\right)^2}=\sqrt{2x^2-6x+9}\)
\(=\sqrt{2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}}\ge\sqrt{\frac{9}{2}}=\frac{3\sqrt{2}}{2}\)
Cho các số thực a,b,c.Chứng minh rằng
a,\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\))
b,\(\left(ab+bc+ca\right)^2\ge\)3abc(a+b+c)
a.
\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2\ge2abc\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2b^2-2a^2bc+c^2a^2\right)+\left(a^2b^2-2ab^2c+b^2c^2\right)+\left(b^2c^2-2abc^2+a^2c^2\right)\ge0\)
\(\Leftrightarrow\left(ab-ca\right)^2+\left(ab-bc\right)^2+\left(bc-ca\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\left(a+b+c\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\) (đúng theo câu a đã chứng minh)