Do \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Nên BĐT tương đương:
\(\left(a+b+c\right)^2\left(a^2+b^2+c^2-ab-bc-ca\right)^2\le\left(a^2+b^2+c^2\right)^3\)
Đặt \(\left\{{}\begin{matrix}a^2+b^2+c^2=x\\ab+bc+ca=y\end{matrix}\right.\) với \(\left\{{}\begin{matrix}x\ge0\\x\ge y\end{matrix}\right.\)
BĐT tương đương:
\(\left(x+2y\right)\left(x-y\right)^2\le x^3\)
\(\Leftrightarrow x^3-3xy^2+2y^3\le x^3\)
\(\Leftrightarrow y^2\left(3x-2y\right)\ge0\)
Hiển nhiên đúng do \(3x-2y=x+2\left(x-y\right)\ge0\)
Đẳng thức xảy ra khi và chỉ khi \(ab+bc+ca=0\)