Định m để\(f\left(x\right)=|\frac{x^2-mx-1}{x^2-2x+3}|\le1,\forall x\inℝ\)
1. Chứng minh rằng mọi hàm \(f:ℝ\rightarrowℝ\) thỏa mãn \(f\left(xy+x+y\right)=f\left(xy\right)+f\left(x\right)+f\left(y\right),\forall x,y\inℝ\)
2. Xác định tất cả các hàm số \(f\) liên tục trên \(ℝ\) thỏa mãn điều kiện \(f\left(2x-y\right)=2f\left(x\right)-f\left(y\right),\forall x,y\inℝ\)
1.Cho \(f\left(x\right)=mx^2+\left(4m-3\right)x+4m-6\). Tìm m để bất phương trình \(f\left(x\right)\ge0\) đúng với \(\forall x\in\left(-1;2\right)\)
2. Cho bất phương trình \(x^2-4x+2|x-3|-m< 0\). Tìm m để bất phương trình đã cho đúng với \(\forall x\in\left[1;4\right]\)
Cho hs
\(f\left(x\right)=-\dfrac{mx^3}{3}+3x^2-mx+1\)
tìm m để
a) \(f'\left(x\right)\le0,\forall x\in R\)
b) pt\(f'\left(x\right)=0\) có 2 nghiệm âm phân biệt
Tìm m thỏa mãn
a) \(\left(m+1\right)x^2-2\left(m+1\right)x+4\ge0\) có tập nghiệm S=R
b) \(\left(m+1\right)x^2-2mx-\left(m-3\right)< 0\) vô nghiệm
c) \(f\left(x\right)=-x^2+2x+m-2018< 0\forall x\in R\)
d) \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm
tìm m để hàm số \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x+3}-2}{x-1}\left(x>1\right)\\mx\left(x\le1\right)\end{matrix}\right.\) liên tục tại x=1
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1^+}\dfrac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x+3}+2}=\dfrac{1}{4}\)
\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(mx\right)=m\)
Hàm liên tục tại x=1 khi: \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=f\left(1\right)\)
\(\Leftrightarrow m=\dfrac{1}{4}\)
Cho \(f\left(x\right)=ax^2+bx+c\) thỏa mãn \(|f\left(x\right)|\le1,\forall|x|\le1\). Chứng minh rằng \(|f\left(x\right)|\le7,\forall|x|\le2\)
1. Tìm nghiệm nguyên: \(\left\{{}\begin{matrix}y-\left|x^2-x\right|-1\ge0\\\left|y-2\right|+\left|x+1\right|-1\le0\end{matrix}\right.\)
2. Tìm m để bpt \(\left|\dfrac{x^2-mx-1}{x^2-2x+3}\right|\le1\) có tập nghiệm bằng R
3. Tìm m để bpt \(x^2+6x\le m\left(\left|x+3\right|+1\right)\) có nghiệm.
1. Có bao nhiêu \(m\in Z\) \(\in\left[-30;40\right]\) để bpt sau đúng \(\forall x\in R\)
\(a.\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)\ge m\)
b.\(b.\left(x^2-2x+4\right)\left(x^2+3x+4\right)\ge mx^2\)
2. Tìm m để pt
\(\left(m+3\right)x-2\sqrt{x^2-1}+m-3=0\) có nghiệm \(x\ge1\)
1.a.
\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)
Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)
\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)
Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)
\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)
\(\Rightarrow f\left(t\right)\ge-1\)
\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)
Có 30 giá trị nguyên của m
1b.
Với \(x=0\) BPT luôn đúng
Với \(x\ne0\) BPT tương đương:
\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)
\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)
Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)
\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)
Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)
\(\Rightarrow f\left(t\right)\ge6\)
\(\Rightarrow m\le6\)
Vậy có 37 giá trị nguyên của m thỏa mãn
2.
Xét với \(x\ge1\)
\(m\left(x+1\right)+3\left(x-1\right)-2\sqrt{x^2-1}=0\)
\(\Leftrightarrow m+3\left(\dfrac{x-1}{x+1}\right)-2\sqrt{\dfrac{x-1}{x+1}}=0\)
Đặt \(\sqrt{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)
\(\Rightarrow m+3t^2-2t=0\)
\(\Leftrightarrow3t^2-2t=-m\)
Xét hàm \(f\left(t\right)=3t^2-2t\) trên \(D=[0;1)\)
\(-\dfrac{b}{2a}=\dfrac{1}{3}\in D\) ; \(f\left(0\right)=0\) ; \(f\left(\dfrac{1}{3}\right)=-\dfrac{1}{3}\) ; \(f\left(1\right)=1\)
\(\Rightarrow-\dfrac{1}{3}\le f\left(t\right)< 1\)
\(\Rightarrow\) Pt có nghiệm khi \(-\dfrac{1}{3}\le-m< 1\)
\(\Leftrightarrow-1< m\le\dfrac{1}{3}\)
1,với giá trị nào của a thì bpt \(ax^2-x+a\ge0,\forall x\in R\)
2,cho f(x)=\(-2x^2+\left(m+2\right)x+m-4\) tìm m để f(x) âm với mọi x
3,tìm m để x2-2(2m-3)x+4m-3>0, với mọi x thuộc R
4, cho f(x)=mx2-2x-1. Xác định m để f(x)<0 với mọi x thuôc R
1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:
\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow a\ge\frac{1}{2}\)
2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)
3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)
4, Nếu m=0 => f(x)=-2x-1<0 (loại)
Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)