Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ xuân
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 6 2019 lúc 19:12

a/ BĐT sai, cho \(a=b=c=2\) là thấy

b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương

\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)

\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Nguyễn Việt Lâm
23 tháng 6 2019 lúc 14:52

Ta có:

\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)

\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)

Agami Raito
Xem chi tiết
Anh Pha
Xem chi tiết
Phan Trọng Đĩnh
26 tháng 5 2019 lúc 23:35

a) Dùng (a+b)2≥4ab
Chia hai vế cho a+b ( vì ab khác 0)
Ta có a+b≥\(\frac{4ab}{a+b}\) (Chuyển ab sang a+b) ta có
\(\frac{a+b}{ab}\)\(\frac{4}{a+b}\) <=> \(\frac{1}{a}\)+\(\frac{1}{b}\)\(\frac{4}{a+b}\)

Quandung Le
Xem chi tiết
lili
11 tháng 11 2019 lúc 22:45

Xét vế trái: Bạn nhân cả tử và mẫu với lần lượt là b^2.c^2; c^2.a^2; a^2.b^2

=> cái mẫu thành lần lượt là a(b+c); b(c+a); c(a+b) do abc=1=> a^2.b^2.c^2=1 và tử lần lượt là b^2.c^2; c^2.a^2; a^2.b^2

xong áp dụng cauchy schwarz thôi => vế trái >= (ab+bc+ca)^2/2(ab+bc+ca)=(ab+bc+ca)/2=(ab+bc+ca)/2abc=1/2a+1/2b+1/2c

=> ĐPCM.

Khách vãng lai đã xóa
Nguyễn Linh Chi
11 tháng 11 2019 lúc 22:58

\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\)

\(\ge\frac{\left(bc+ac+ab\right)^2}{2\left(ab+ac+bc\right)}\ge\frac{\left(bc+ac+ab\right)}{2}\)

\(=\frac{bc}{2}+\frac{ac}{2}+\frac{ab}{2}=\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

Dấu "=" xảy ra <=> a =b = c.

Khách vãng lai đã xóa
Linh_Chi_chimte
Xem chi tiết
Girl
5 tháng 12 2018 lúc 5:12

\(\hept{\begin{cases}\frac{1}{\sqrt{2a+b+1}}+\frac{1}{\sqrt{2b+c+1}}+\frac{1}{\sqrt{2c+a+1}}=A\\\sqrt{2a+b+1}+\sqrt{2b+c+1}+\sqrt{2c+a+1}=B\end{cases}}\)(thật ra cx ko cần đặt,mk đặt làm cho gọn hơn thôi ^^)

Cauchy-Schwarz: \(A\ge\frac{9}{B}\)

Xét: \(B^2\le\left(1^2+1^2+1^2\right)\left(2a+b+1+2b+c+1+2c+a+1\right)=36\)

\(\Rightarrow B\le6\)

\(A\ge\frac{9}{B}\ge\frac{9}{6}=\frac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

Lê Thị Mai
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2020 lúc 10:25

\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(VT\ge\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}=\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\left(\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{1}{a+b}+\frac{1}{c+a}\right)\)

\(VT\ge\frac{4}{a+2b+c}+\frac{4}{a+b+2c}+\frac{4}{2a+b+c}\)

Dấu "=" xảy ra khi \(a=b=c\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết

Violympic toán 8

Khách vãng lai đã xóa

Xin ngoại lệ ạ ( Ko liên quan đến câu hỏi)

Violympic toán 8

Khách vãng lai đã xóa
Minh Hoàng Nguyễn
Xem chi tiết
Akai Haruma
30 tháng 5 2020 lúc 12:35

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)

\(=[a(a+b+c)]^2\)

\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Agami Raito
Xem chi tiết