Rút gọn biểu thức
\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
với n thuộc N
Rút gọn biểu thức
b- \(\sqrt{1+2+3+....+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
\(A=1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)
\(B=\left(n-1\right)+..+2+1=\frac{\left(n-1\right)n}{2}\)
\(A+n+B=\frac{\left(n-1\right)n}{2}+n+\frac{\left(n-1\right)n}{2}=\left(n-1\right)n+n=n^2\)
n là tự nhiên \(\sqrt{n^2}=n\)
Bài 1: \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{n^2}\right)\)với n thuộc N; n lớn hơn hoặc bằng 2
Rút gọn thành biểu thức trên
A= \(\left(\frac{3}{4}\right)\left(\frac{8}{9}\right)\left(\frac{15}{16}\right)......\left(\frac{\left(n-1\right)\left(n+1\right)}{n.n}\right)\)
\(=\frac{3.8.15....\left(n-1\right)\left(n+1\right)}{\left(2.3.4......n\right)\left(2.3.4.......n\right)}=\frac{1.3.2.4.3.5.......\left(n-1\right)\left(n+1\right)}{\left(2.3.4.....n\right)\left(2.3.4..................n\right)}=\frac{\left(1.2.3.......\left(n-1\right)\right)\left(3.4.5........\left(n+1\right)\right)}{\left(2.3.4.....n\right)\left(2.3.4...........n\right)}\)
\(=\frac{1.\left(n+1\right)}{n.2}=\frac{n+1}{2n}\)
mình chỉ tick cho những người giải thôi, không chấp nhận trường hợp xin tick, và cấm tình trạng spam bậy. Nếu ai giải được thì mình tick, nếu ai không giải, xin tick, hay spam để kiếm điểm hỏi đáp thì miễn.
rút gọn biểu thức
\(D=\left(n+1\right)\left(n^2+1\right)\left(n^{2^2}+1\right)\left(n^{2^3}+1\right)...\left(n^{2^m}+1\right)\)
rút gọn biểu thức B=\(\frac{1}{\sqrt[3]{1}+\sqrt[3]{2}+\sqrt[3]{4}}\)+\(\frac{1}{\sqrt[3]{4}+\sqrt[3]{6}+\sqrt[3]{9}}\)+....+\(\frac{1}{\sqrt[3]{n^2}+\sqrt[3]{n\left(n+1\right)}+\sqrt[3]{\left(n+1\right)^2}}\)
Cho biểu thức N = \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
1) Rút gọn biểu thức N
2) Tìm giá trị của a để N = - 2016
ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)
1) Ta có: \(N=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)
\(=1-a\)
2) Để N=-2016 thì 1-a=-2016
\(\Leftrightarrow1-a+2016=0\)
\(\Leftrightarrow2017-a=0\)
hay a=2017(thỏa ĐK)
Vậy: Để N=-2016 thì a=2017
Rút gọn biểu thức \(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+\dfrac{3}{x^4}+...+\dfrac{n}{x^{n+1}}\) bằng:
A. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
B. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{2n}\left(x-1\right)^2}\)
C. \(S=\dfrac{x^n-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
D. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
Rút gọn biểu thức \(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+\dfrac{3}{x^4}+...+\dfrac{n}{x^{n+1}}\) bằng:
A. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
B. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{2n}\left(x-1\right)^2}\)
C. \(S=\dfrac{x^n-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
D. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)
\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)
\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)
\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)
\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
Cho 2 biểu thức M = \(3\sqrt{3}-\sqrt{12}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
N = \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) với a>0 và a≠1
a, Rút gọn biểu thức M
b, Tìm các giá trị của a để giá trị của biểu thức M bằng 2 lần giá trị của biểu thức N
a) \(M=3\sqrt{3}-\sqrt{12}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(M=3\sqrt{3}-2\sqrt{3}-\left|\sqrt{3}-1\right|\)
\(M=\sqrt{3}-\sqrt{3}+1\)
\(M=1\)
b) Ta có:
\(N=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(N=\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(N=\left(\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(N=\dfrac{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}+1\right)}\)
\(N=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Theo đề ta có: \(M=2N\)
Khi: \(1=2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\)
\(\Leftrightarrow1=\dfrac{2\sqrt{a}-2}{\sqrt{a}}\)
\(\Leftrightarrow\sqrt{a}=2\sqrt{a}-2\)
\(\Leftrightarrow2\sqrt{a}-\sqrt{a}=2\)
\(\Leftrightarrow\sqrt{a}=2\)
\(\Leftrightarrow a=4\left(tm\right)\)
Rút gọn biểu thức
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\)
\(=\left(18x^{2n-3}+3x^n\right)-\left(18x^{2n-3}-2x^n\right)\)
\(=18x^{2n-3}+3x^n-18x^{2n-3}+2x^n\)
\(=\left(18x^{2n-3}-18x^{2n-3}\right)+\left(3x^n+2x^n\right)\)
\(=5x^n\)
\(=18x^{2n-3}+3x^n-18x^{2n-3}+2x^n=5x^n\)