giải phương trình
x+1/35 + x+3/33 = x+5/31 + x+7/29
( cộng thêm 1 vào các hạng tử)
a) \(\dfrac{x+1}{35}\)+\(\dfrac{x+3}{33}\)=\(\dfrac{x+5}{31}\)+\(\dfrac{x+7}{29}\)Hd: cộng thêm 1 vào các hạng tửb) \(\dfrac{x-10}{1994}\)+\(\dfrac{x-8}{1996}\)+\(\dfrac{x-6}{1998}\)+\(\dfrac{x-4}{2000}\)+\(\dfrac{x-2}{2002}\)=\(\dfrac{x-2002}{2}\)+\(\dfrac{x-2000}{4}\)+\(\dfrac{x-1998}{6}\)+\(\dfrac{x-1996}{8}\)+\(\dfrac{x-1994}{10}\)Hd: trừ đi 1 vào các hạng tử
c) \(\dfrac{x-1991}{9}\)+\(\dfrac{x-1993}{7}\)+\(\dfrac{x-1995}{5}\)+\(\dfrac{x-1997}{3}\)+\(\dfrac{x-1999}{1}\)=\(\dfrac{x-9}{1991}\)+\(\dfrac{x-7}{1993}\)+\(\dfrac{x-5}{1995}\)+\(\dfrac{x-3}{1997}\)+\(\dfrac{x-1}{1999}\)Hd: trừ đi 1 vào các hạng tửd) \(\dfrac{x-8}{15}\)+\(\dfrac{x-74}{13}\)+\(\dfrac{x-67}{11}\)+\(\dfrac{x-64}{9}\)=10Chú ý: 10=1+2+3+4e) \(\dfrac{x-1}{13}\)-\(\dfrac{2x-13}{15}\)=\(\dfrac{3x-15}{27}\)-\(\dfrac{4x-27}{29}\)Hd: thêm hoặc bớt 1 vào các hạng tử
giải phương trình : \(\dfrac{x+1}{35}+\dfrac{x+3}{33}=\dfrac{x+5}{31}+\dfrac{x+7}{29}\)
\(\dfrac{x+1}{35}+\dfrac{x+3}{33}=\dfrac{x+5}{31}+\dfrac{x+7}{29}\)
\(\Leftrightarrow\dfrac{\left(x+1\right).33}{35.33}+\dfrac{\left(x+3\right).35}{33.35}=\dfrac{\left(x+5\right).29}{31.29}+\dfrac{\left(x+7\right).31}{29.31}\)
\(\Leftrightarrow\dfrac{33\left(x+1\right)+35\left(x+3\right)}{1155}=\dfrac{29\left(x+5\right)+31\left(x+7\right)}{899}\)
\(\Leftrightarrow\dfrac{33x+33+35x+35.3}{1155}=\dfrac{29x+29.5+31x+31.7}{899}\)
\(\Leftrightarrow\dfrac{68x+138}{1155}=\dfrac{60x+362}{899}\)
\(\Leftrightarrow\dfrac{\left(68x+138\right).899}{1155.899}=\dfrac{\left(60x+362\right).1155}{899.115}\)
\(\Rightarrow\left(68x+138\right).899=\left(60x+362\right).1155\)
<=> 61132x+124062=69300x+418110
<=> 61132x-69300x=418110-124062
<=> -8168x=294048
<=> x=-36
Vậy phương trình có nghiệm x=-36
\(PT\Leftrightarrow\dfrac{x+1}{35}+\dfrac{x+3}{33}=\dfrac{x+5}{31}+\dfrac{x+7}{29}\)
\(\Leftrightarrow\dfrac{x+1}{35}+1+\dfrac{x+3}{33}+1=\dfrac{x+5}{31}+1+\dfrac{x+7}{29}+1\)
\(\Leftrightarrow\dfrac{x+36}{35}+\dfrac{x+36}{33}=\dfrac{x+36}{31}+\dfrac{x+36}{29}\)
\(\Leftrightarrow\left(x+36\right)\left(\dfrac{1}{35}+\dfrac{1}{33}-\dfrac{1}{31}-\dfrac{1}{29}\right)=0\)
\(\Leftrightarrow x=-36\)
GIẢI PHƯƠNG TRÌNH
1)\(\dfrac{x+1}{35}+\dfrac{x+3}{33}=\dfrac{x+5}{31}+\dfrac{x+7}{29}\)
2)x(x+1)(x+2)(x+3)=24
3)\(\dfrac{x-1}{13}-\dfrac{2x-13}{15}=\dfrac{3x-15}{27}-\dfrac{4x-27}{29}\)
4)\(\dfrac{1909-x}{91}+\dfrac{1907-x}{93}+\dfrac{1905-x}{95}+\dfrac{1903-x}{91}+4=0\)
1) PT \(\Leftrightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)
\(\Leftrightarrow\dfrac{x+36}{35}+\dfrac{x+36}{33}=\dfrac{x+36}{31}+\dfrac{x+36}{29}\)
\(\Leftrightarrow\left(x+36\right)\left(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}\right)=0\)
\(\Leftrightarrow x+36=0\) (Do \(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}>0\))
\(\Leftrightarrow x=-36\).
Vậy nghiệm của pt là x = -36.
2) x(x+1)(x+2)(x+3)= 24
⇔ x.(x+3) . (x+2).(x+1) = 24
⇔(\(x^2\) + 3x) . (\(x^2\) + 3x + 2) = 24
Đặt \(x^2\)+ 3x = b
⇒ b . (b+2)= 24
Hay: \(b^2\) +2b = 24
⇔\(b^2\) + 2b + 1 = 25
⇔\(\left(b+1\right)^2\)= 25
+ Xét b+1 = 5 ⇒ b=4 ⇒ \(x^2\)+ 3x = 4 ⇒ \(x^2\)+4x-x-4=0 ⇒x(x+4)-(x+4)=0
⇒(x-1)(x+4)=0⇒x=1 và x=-4
+ Xét b+1 = -5 ⇒ b=-6 ⇒ \(x^2\)+3x=-6 ⇒\(x^2\) + 3x + 6=0
⇒\(x^2\) + 2.x.\(\dfrac{3}{2}\) + (\(\dfrac{3}{2}\))2 = - \(\dfrac{15}{4}\) Hay ( \(x^2\) +\(\dfrac{3}{2}\) )2= -\(\dfrac{15}{4}\) (vô lí)
⇒x= 1 và x= 4
Giải các phương trình sau : ( biến đổi đặc biệt )
a) \(\frac{x+1}{35}\)+ \(\frac{x+3}{33}\)= \(\frac{x+5}{31}\)+ \(\frac{x+7}{29}\)( HD : cộng thêm 1 vào các hạng tử )
b) \(\frac{x-10}{1994}\)+ \(\frac{x-8}{1996}\)+\(\frac{x-6}{1998}\)+ \(\frac{x-4}{2000}\)+ \(\frac{x-2}{2002}\)= \(\frac{x-2002}{2}\)+ \(\frac{x-2000}{4}\)+ \(\frac{x-1988}{6}\)+ \(\frac{x-1996}{8}\)+ \(\frac{x-1994}{10}\)( HD : trừ đi 1 vào các hạng tử )
c) \(\frac{x-1991}{9}\)+ \(\frac{x-1993}{7}\)+ \(\frac{x-1995}{5}\)+ \(\frac{x-1997}{3}\)+ \(\frac{x-1991}{1}\)= \(\frac{x-9}{1991}\)+ \(\frac{x-7}{1993}\)+ \(\frac{x-5}{1995}\)+ \(\frac{x-3}{1997}\)+ \(\frac{x-1}{1999}\)( HD : trừ đi 1 vào các hạng tử )
d) \(\frac{x-85}{15}\)+ \(\frac{x-74}{13}\)+ \(\frac{x-67}{11}\)+ \(\frac{x-64}{9}\)= 10 ( Chú ý : 10 = 1 + 2 + 3 + 4 )
e) \(\frac{x-1}{13}\)- \(\frac{2x-13}{15}\)= \(\frac{3x-15}{27}\)- \(\frac{4x-27}{29}\)( HD : Thêm hoặc bớt 1 vào các hạng tử )
a, \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
\(\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)
\(\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)
\(=>x+36=0\)
\(=>x=36\)
Giải phương trình sau:
(x+1)/35 + (x+3)/33= (x+5)/31 + (x+1)/29
\(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
\(\Leftrightarrow\frac{x+1}{35}+1+\frac{x+3}{33}+1=\frac{x+5}{31}+1+\frac{x+7}{29}+1\)
\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}=\frac{x+36}{31}+\frac{x+36}{29}\)
\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)
\(\Leftrightarrow\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)
\(\Leftrightarrow x+36=0\).Do \(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\ne0\)
\(\Leftrightarrow x=-36\)
Giải các pt sau:
A, x+3/2 - x-1/3 = x+5/6 + 1
B, x+1/35 + x+3/33 = x+5/31 + x+7/29
C, x-10/18 + x-8/20 + x-6/22 = x-19/9 + x-21/7 + x-15/13
A, \(\frac{x+3}{2}\)-\(\frac{x-1}{3}\)=\(\frac{x+5}{6}\)+1
⇔ \(\frac{3\left(x+3\right)}{6}\)-\(\frac{2\left(x-1\right)}{6}\)=\(\frac{x+5}{6}\)+\(\frac{6}{6}\)
⇔ 3x+9-2x+2=x+5+6
⇔ 3x-2x-x=5+6-9-2
⇔0x=0 (luôn đúng với mọi x)
Vậy phương trình có vô số nghiêm:S=R
a) \(x+\frac{3}{2}-x-\frac{1}{3}=x+\frac{5}{6}+1\)
⇔ \(\frac{3}{2}-x-\frac{1}{3}=\frac{5}{6}+1\)
⇔ \(\frac{7}{6}-x=\frac{5}{6}+1\)
⇔ \(\frac{7}{6}-x=\frac{11}{6}\)
⇔ \(-x=\frac{11}{6}-\frac{7}{6}\)
⇔ \(-x=\frac{2}{3}\)
⇔ \(x=\frac{-2}{3}\)
Vậy tập nghiệm của pt là S = \(\left\{\frac{-2}{3}\right\}\)
\(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}\frac{x+7}{29}\)
\(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
đề chính xác là như này đúng k cậu=)đề k rõ ràng k aii giúp đc nhé!
\(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
\(\Leftrightarrow\left(\frac{x+1}{35}+1\right)+\left(\frac{x+3}{33}+1\right)=\left(\frac{x+5}{31}+1\right)+\left(\frac{x+7}{29}+1\right)\)
\(\Leftrightarrow\left(\frac{x+1+35}{35}\right)+\left(\frac{x+3+33}{33}\right)=\left(\frac{x+5+31}{31}\right)+\left(\frac{x+7+29}{29}\right)\)
\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}=\frac{x+36}{31}+\frac{x+36}{29}\)
\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)
\(\Leftrightarrow\left(x+36\right).\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)
Vì \(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\ne0.\)
\(\Leftrightarrow x+36=0\)
\(\Leftrightarrow x=0-36\)
\(\Leftrightarrow x=-36.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-36\right\}.\)
Chúc bạn học tốt!
Câu 1: giải phương trình sau: a, 3x + 25 = 0 b, (x - 5)(4x + 3) = 31(x - 5) c, 3/x+3 - 1/x-1 = 5x-33/(x+3).(x-1)
a: =>3x=-25
=>x=-25/3
b: =>(x-5)(4x+3-31)=0
=>(4x-28)(x-5)=0
=>x=5 hoặc x=7
c: =>3x-3-x-3=5x-33
=>2x-6=5x-33
=>-3x=-27
=>x=9(nhận)
Giải các phương trình sau:
a) \(\dfrac{x+1}{35}+\dfrac{x+3}{33}=\dfrac{x+5}{31}+\dfrac{x+7}{29}\)
b) \(\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\)
a: \(\Rightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)
=>x+36=0
=>x=-36
b: \(\Leftrightarrow\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}-1\right)+\left(\dfrac{x-6}{1998}-1\right)+\left(\dfrac{x-4}{2000}-1\right)+\left(\dfrac{x-2}{2002}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)+\left(\dfrac{x-1996}{8}-1\right)+\left(\dfrac{x-1994}{10}-1\right)\)
=>x-2004=0
=>x=2004