Tìm đa thức P(x) = ax2 + x3 + bx + c biết P(x) chia hết cho (x+2)2 và P(1) = 4
1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))
Cho đa thức: f(x) = x3 + ax2 + bx – 2
Xác định a, b biết đa thức có 2 nghiệm là x1 = -1 và x2 = 1.
Tìm một nghiệm của đa thức P(x) = x3 + ax2 + bx + c.
Biết rằng đa thức này có nghiệm và a+2b+4c = -1/2
Giúp mình với ạ, mình cảm ơn.
a. Ta có: 5a +b +2c =0 => b = -5a -2c
=>Q(2).Q(-1) = (4a +2b +c)(a -b +c) = (4a -10a -4c +c)(a +5a + 2c +c)
= (-6a - 3c)(6a +3c) = - (6a +3c)^2 <= 0 với mọi a,c => Q(2).Q(-1),<_0 với 5a+b+2c=0.
b. Q(x) = 0 với mọi x nên:
Q(0) =0 => c =0 (1)
Q(1) = a+b =0 (2)
Q(-1) = a-b =0 (3)
Từ (2) và (3) => a =b =0 kết hợp với (1) suy ra a =b= c =0.
Cho hai đa thức sau:f(x) = ( x-1)(x+2); g(x) = x3 + ax2 + bx + 2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
cho : f (x) = 0
=> (x−1)(x+2)=0
=>x−1=0 và x+2=0
=>x=1vàx=-2
Vậy x = 1 và x = −2 là nghiệm của đa thức f (x)
Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = −2 là nghiệm của g (x)
Ta có: g(1)=13+a⋅12+b⋅1+2=0
⇒1+a+b+2=0
⇒3+a+b=0
⇒b=−3−a (1)
Ta có: g(−2)=(−2)3+a⋅(−2)2+b⋅(−2)+2=0
⇒−8+4a−2b+2=0
⇒2⋅(−4)+2a+2a−2b+2=0
⇒2⋅(−4+a+a−b+1)=0
⇒(−3+2a−b)=0
=> 2a − b = 3 (2)
thay (1) vao (2) ta dc
2a−(−3−a)=3
⇒a=0
Do b=−3-a
=>b=3
Vậy a = 0 ; b = 3
Cho hai đa thức sau:f(x) = ( x-1)(x+2); g(x) = x3 + ax2 + bx + 2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
f(x) = 0 => ( x - 1).( x + 2) = 0
=> th1: x - 1= 0 =>x = 1
th2: x + 2 = 0 => x = -2
Vì nghiệm của f(x) cũng là nghiệm của g(x) nên x = 1 và x = -2 là nghiệm của g(x)
* thay x = 1 vào g(x) = 0
=> 1 + a + b + 2 = 0 => a+ b = -3 (1)
* thay x = -2 vào g(x) = 0
=> -8 + 4a - 2b + 2 = 0
=> 4a - 2b = 6
=> 2a -b = 3 (2)
Từ (1) và (2) => a + b = -3
2a - b = 3
=> 3a =0
b = -3 -a
=> a = 0
b = -3
------------ Chúc cậu học tốt------
Tick cko tớ nhé ~
Cho hai đa thức sau: f(x) = (x – 1)(x + 2) và g(x) = x3 + ax2 + bx + 2 Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
+) Để f (x) có nghiệm thì : f (x) = 0
=> \(\left(x-1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy x = 1 và x = \(-2\) là nghiệm của đa thức f (x)
Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = \(-2\) là nghiệm của g (x)
\(\Rightarrow g\left(1\right)=1^3+a\cdot1^2+b\cdot1+2=0\\ \Rightarrow1+a+b+2=0\\ \Rightarrow3+a+b=0\\ \Rightarrow b=-3-a\left(1\right)\)
+) \(g\left(-2\right)=\left(-2\right)^3+a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+2=0\\ \Rightarrow-8+4a-2b+2=0\\ \Rightarrow2\cdot\left(-4\right)+2a+2a-2b+2=0\\ \Rightarrow2\cdot\left(-4+a+a-b+1\right)=0\\ \Rightarrow2\cdot\left(-3+2a-b\right)=0\\ \Rightarrow\left(-3+2a-b\right)=0\)
=> 2a \(-\) b = 3 \(\left(2\right)\)
+) Thay \(\left(1\right)vào\left(2\right)\) ta được :
\(2a-\left(-3-a\right)=3\\ \Rightarrow2a+3+a=3\\ \Rightarrow3a=3-3\\ \Rightarrow3a=0\\ \Rightarrow a=0\)
Do \(2a-b=3 \Rightarrow2\cdot0-b=3\Rightarrow0-b=3\Rightarrow b=-3\)
Vậy a = 0 ; b = \(-\)3
cho hai đa thức sau:
f(x) = (x-1)(x+2)
g(x) = x3+ax2=bx=2
xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
`f(x) = (x-1)(x+2) = 0`.
`=>` \(\left[ \begin{array}{l}x=1\\x=-2\end{array} \right.\)
Với `x = 1 => g(x) = 1 + a + b + 2 = 0`.
`<=> a + b = -3`.
Với `x = -2 => g(x) = -8 + 4a - 2b + 2 = 0`.
`<=> 4a - 2b = 6`.
`<=> 2a - b = 6`.
`=> ( a + b) + (2a - b) = -3 + 6`.
`=> 3a = 3`.
`=> a = 1.`
`=> b = -4`.
Vậy `(a,b) = {(1, -4)}`.
Bài: a) Xác định đa thức f(x) = ax + b biết f(2) = - 4 ; F(3) = 5.
b) Xác định a và b biết nghiệm của đa thức G(x) = x2 – 1 là nghiệm của đa thức Q(x) = x3 + ax2 + bx – 2
Bài 5: (1,0đ)
Cho hai đa thức sau:
f(x) = ( x-1)(x+2)
g(x) = x3 + ax2 + bx + 2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
Ta có f(x)=0 <=> \(\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên 1 và -2 là nghiệm của đa thức g(x)
+Thay x=1, ta có: \(g\left(1\right)=1^3+a.1^2+b.1+2=0\Leftrightarrow1+a+b+2=0\Leftrightarrow a+b=-3\left(1\right)\)
+Thay x=-2, ta có:
\(g\left(-2\right)=\left(-2\right)^3+a.2^2+b.\left(-2\right)+2=0\Leftrightarrow-8+4a-2b+2=0\Leftrightarrow4a-2b=6\left(2\right)\)
Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\)
Giải hệ pt, ta được: a=0, b=-3.
Ta có : f(x) = 0
⇔ ( x-1)(x+2) = 0
⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên x =1 hoặc x = -2 là nghiệm của g(x)
Thay x = 1 vào g(x) = 0
⇔ 13 + a.12 + b.1 + 2 = 0
⇔ 1 + a + b + 2 = 0
⇔ a + b = -3 (1)
Thay x = -2 vào g(x) = 0
⇔ (-2)3 + a.(-2)2 + b.(-2) + 2 = 0
⇔ -8 + a.4 - 2.b + 2 = 0
⇔ 4a - 2b = 6
⇔ 2.(2a - b ) = 6
⇔ 2a - b = 3 (2)
Từ (1) và (2) ⇒ \(\left\{{}\begin{matrix}a+b=-3\\2a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=0\\b=-3-a\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)
Để f (x) có nghiệm thì : f (x) = 0
=> (x−1)(x+2)=0
\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy x = 1 và x = −2 là nghiệm của đa thức f (x)
Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = −2 là nghiệm của g (x)
⇒g(1)=13+a⋅12+b⋅1+2=0
⇒1+a+b+2=0
⇒3+a+b=0
⇒b=−3−a (1)
@)
g(−2)=(−2)3+a⋅(−2)2+b⋅(−2)+2=0
⇒−8+4a−2b+2=0
⇒2⋅(−4)+2a+2a−2b+2=0
⇒2⋅(−4+a+a−b+1)=0
⇒(−3+2a−b)=0
=> 2a − b = 3 (2)
thay (1) vao (2) ta dc
2a−(−3−a)=3
⇒a=0
Do 2a−b=3
⇒b=−3Vậy a = 0 ; b = −3
a) Tìm a để đa thức x3+x2-x+a chia hết cho đa thức x+2
b) Tìm a và b để đa thức x3+ax2+2x+b chia hết cho đa thức x2+x+1
c) Tìm a và b để đa thức x3+4x2+ax+b chia hết cho đa thức x2+x+1
em mong mọi người giúp đỡ em cảm ơn ạ