\(3\times\)(x - 8 ) +15 = 4x - 1
B=[ x+1/2x-2+3/x2-1-x+3/2x+2]×4x2-4/5
x2-36/2x+10×3/6-x
5x+10/4x-8×4-2x/x+2
11-4x2/x2+4x:2-4x/3x
(1/x2+x-2-x/x+1)÷(1/x+x-2)
a: \(B=\left(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right)\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{10}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)
b: \(\dfrac{x^2-36}{2x+10}\cdot\dfrac{3}{6-x}\)
\(=\dfrac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\dfrac{-3}{x-6}\)
\(=\dfrac{-3\left(x+6\right)}{2\left(x+5\right)}\)
c: \(\dfrac{5x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-10}{4}=\dfrac{-5}{2}\)
d: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)
\(=\dfrac{1-4x^2}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)
\(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x+4}\cdot\dfrac{3}{2\left(1-2x\right)}=\dfrac{3\left(2x+1\right)}{x+4}\)
a, A = (5x-2) × (x+1) - ( x-3) × (5x+1) - 17( x+3)
b, B = (6x-5) × ( x+8) - (3x-1) × (2x+3) - 9(4x-3)
c, C = x(x^3 + x^2 - 3x -2 ) - ( x^2 -2 ) × ( x^2+x -1 )
a) A= (5x-2).(x+1)-(x-3).(5x+1)-17(x+3)
=> A= 5x2+5x-2x-2-5x2-x+15x+3-17x-51
=> A= -50
b) B= (6x-5) × ( x+8) - (3x-1) × (2x+3) - 9(4x-3)
=> B= 6x2+48x-5x-40-6x2-9x+2x+3-36x+27
=> B= -10
c) C = x(x3 + x2 - 3x -2 ) - ( x2 -2 ) × ( x2+x -1 )
=> C= x4+x3-3x2-2x-x4+x3+3x2-2x-2
=> C= 2x3-4x-2
\(A=\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}\times\dfrac{4x^2-8x+16}{x^2-4}\right)\div\dfrac{16}{x+2}\times\dfrac{x^2+3x+2}{x^2+x+1}\)
\(B=\dfrac{x^2+x-2}{x^3-1}\)
a) Tìm ĐKXĐ của A, B. Rút gọn A, B
b)Tìm GTLN của A+B
Các bạn giúp mình với
Bài 1
A=1×2×3×...×9-1×2×3×...×8-1×2×3...8×8
B=(3×4×2mũ16) mũ 2
C=70×(131313/565656+131313/727272+131313/909090)
D thực hiện phép tính : B=1/4×9+1/9×14+1/14×19+...+1/64×69
Bài 2
C)(2.x-15) mũ 5=(2.x-15) mũ 3
giải các phương trình
a)\(\sqrt{4x^2-4x+1}-\dfrac{1}{2}=\dfrac{1}{3}\)
b)\(\sqrt{x-3}\times\left(x^2-6x+8\right)=0\)
c)\(x+\sqrt{x-1}=13\)
lm nhanh giúp mk nhé
a)Pt \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\dfrac{1}{3}+\dfrac{1}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{5}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\dfrac{5}{6}\\2x-1=-\dfrac{5}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=\dfrac{1}{12}\end{matrix}\right.\)
Vậy...
b)Đk:\(x\ge3\)
Pt \(\Leftrightarrow\sqrt{x-3}\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\x-4=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=4\left(tm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)
Vậy...
c)Đk:\(x\ge1\)
\(x+\sqrt{x-1}=13\)
\(\Leftrightarrow\sqrt{x-1}=13-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}13-x\ge0\\x-1=x^2-26x+169\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\x^2-27x+170=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\x^2-17x-10x+170=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\\left(x-17\right)\left(x-10\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\\left[{}\begin{matrix}x=17\\x=10\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x=10\) (tm)
Vậy...
a) \(\dfrac{-2}{15}\times x=\dfrac{-2}{7}\) b) \(\dfrac{7}{-5}\times x=-3\) c) \(-\dfrac{4}{9}x=\dfrac{1}{2}\) d) \(\dfrac{8}{3}\div x=\dfrac{-3}{8}\)
e) \(x\div\dfrac{3}{-4}=-12\) f) \(\left(-1\right)\div x=\dfrac{-3}{7}+\dfrac{4}{5}\) g)\(\dfrac{4}{11}x-\dfrac{1}{3}=\dfrac{2}{5}\) i) \(\dfrac{-6}{7}-\dfrac{1}{5}x=-4\)
j) \(\dfrac{1}{2}+\dfrac{2}{3}\div7=\dfrac{-1}{3}\) k) \(\dfrac{-5}{2}+x\div7=\dfrac{-1}{3}\) L) \(\dfrac{-3}{2}-\dfrac{1}{4}\div x=-1\)
a: =>x*2/15=2/7
=>x=2/7:2/15=2/7*15/2=15/7
b: x=3:7/5=15/7
c: x=-1/2:4/9=-1/2*9/4=-9/8
d: x=-8/3:3/8=-64/9
g: =>4/11x=2/5+1/3=6/15+5/15=11/15
=>x=11/15:4/11=121/60
l: =>1/4:x=1-3/2=-1/2
=>x=-1/4:1/2=-1/4*2=-1/2
k: =>x:7=-1/3+5/2=-2/6+15/6=13/6
=>x=91/6
bài 1 : rút gọn các biểu thức sau .
a, \(\sqrt{4\left(a-3\right)^2}+2\sqrt{a^2+4a+4}\left(a< -2\right)\)
b, \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-2\right)^2}}+\dfrac{x^2-1}{x-3}\left(x< 3\right)\)
c, \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
bài 2 thực hiện phép tính :\
a, \(\sqrt{8-\sqrt[2]{7}}\times\sqrt{8+\sqrt[2]{7}}\)
b, \(\sqrt{4+\sqrt{8}+}+\sqrt{2}+\sqrt{2+\sqrt{2}}\times\sqrt{2-\sqrt{2+2}}\)
c, \(\left(4+\sqrt{15}\right)\times\sqrt{10}-\sqrt{6}\times\sqrt{4-\sqrt{15}}\)
d, \(\left(2+\sqrt{3}\right)^2-\left(2-\sqrt{3}\right)\times\left(2+\sqrt{3}\right)\)
Bài 1 :
a) \(\sqrt{4\left(a-3\right)^2}+2\sqrt{\left(a^2+4a+4\right)}\)
= \(2\left|a-3\right|+2\left|a+2\right|\)
\(=2.\left(-a+3\right)+2\left(-a-2\right)\)
b) có sai đề ko ?
c) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\sqrt{\dfrac{x^2\left(x+2\right)}{x+2}}=4x-2\sqrt{4}+x=3x-2\sqrt{4}\)
Bài 3 : Tìm x, biết :
a) 16x^2 - (4x - 5)^2 = 15
b) (2x + 3)^2 - 4×(x - 1)×(x+ 1)=49
c) (2x + 1)×(1 - 2x)+(1 - 2x)^2=18
d) 2×(x + 1)^2 - (x - 3)×(x + 3) - (x - 4)^2=0
e) (x -5)^2 - x×(x - 4)=9
f) (x - 5)^2 + (x - 4)×(1 - x)=0
Giúp mình với, mình bó tay bài này rồi ;-;
Bài 3: Tìm x, biết:
a) \(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow16x^2-16x^2+40x-25-15=0\)
\(\Leftrightarrow40x-40=0\)
\(\Leftrightarrow4x=40\)
\(\Leftrightarrow x=10\)
Vậy x = 10
b) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow\left(2x+3\right)^2-4\left(x^2-1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)
\(\Leftrightarrow12x-36=0\)
\(\Leftrightarrow12x=36\)
\(\Leftrightarrow x=3\)
Vậy x = 3
c) \(\left(2x+1\right)\left(1-2x\right)+\left(1-2x\right)^2=18\)
\(\Leftrightarrow\left(1-2x\right)\left(2x+1+1-2x\right)=18\)
\(\Leftrightarrow2\left(1-2x\right)=18\)
\(\Leftrightarrow2-4x=18\)
\(\Leftrightarrow4x=-16\)
\(\Leftrightarrow x=-4\)
Vậy x =-4
d) \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\)
\(\Leftrightarrow12x-5=0\)
\(\Leftrightarrow12x=5\)
\(\Leftrightarrow x=\frac{5}{12}\)
Vậy \(x=\frac{5}{12}\)
e) \(\left(x-5\right)^2-x\left(x-4\right)=9\)
\(\Leftrightarrow x^2-10x+25-x^2+4x=9\)
\(\Leftrightarrow25-6x=9\)
\(\Leftrightarrow6x=16\)
\(\Leftrightarrow x=\frac{8}{3}\)
Vậy \(x=\frac{8}{3}\)
f) \(\left(x-5\right)^2+\left(x-4\right)\left(1-x\right)=0\)
\(\Leftrightarrow x^2-10x+25+x-x^2-4+4x=0\)
\(\Leftrightarrow21-5x=0\)
\(\Leftrightarrow5x=21\)
\(\Leftrightarrow x=\frac{21}{5}\)
Vậy \(x=\frac{21}{5}\)
A=\(\left(\frac{4x}{x+2}-\frac{x^3-8}{x^3+8}\times\frac{4x^2-8x+16}{x^2-4}\right)\)) : \(\frac{16}{x+2}\times\frac{x^2+3x+2}{x^2+x+1}\)
a)rút gọn A
b) vs gt nào của x thì A+B có gt Max. Tìm gt lớn nhất đó