Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 9 2017 lúc 2:35

Nguyễn Khánh
Xem chi tiết
๖²⁴ʱ☪á ☪ℴท︵❣
15 tháng 3 2021 lúc 20:35

a) tam giác ABC cân tại A nên hai góc ABC= ACB

Ta có: góc ABM= 180 độ - góc ABC ( kề bù )

           góc ACN= 180 độ - ACB ( kề bù )

Vậy góc ABM= góc ACN

Xét tam giác ABM và tg ACN có:

AB=AC ( tg ABC cân tại A )

góc ABM= góc ACN ( cmt )

BM=CN(gt)

=> tg ABM= tg ACN ( c-g-c)

=> AM=AN( 2 cạnh tương ứng )

=> tg AMN cân tại A

b) Vì tg AMN cân tại A nên góc AMN= góc ANM

Xét tg HBM và tg KCN có:

góc MHB= góc NKC( = 90 độ )

BM=CN ( gt)

góc AMN= góc ANM ( tg AMN cân tại A)

=> tg HBM= tg KCN ( cạnh huyền - góc nhọn )

=> BH= CK ( 2 cạnh tương ứng )

c) Vì tg HBM = tg KCN nên => HM= KN ( 2 cạnh tương ứng )

Lại có: HM+HA= AM; KN+KA= AN

Vì AM= AN ( tg AMN cân tại A )

     HM= HN                                   

=> AH= AK

d) tg ABM = tg CKN => góc HBM = góc KCN

góc CBO = góc HBM và góc KCN= góc BCO ( đối đỉnh )

=> tg OBC cân tại O

e) Khi góc BAc = 60 độ => tg ABC đều

=> BM = AB 

=> tg ABM cân tại B

Ta có : góc AMB = 1212 . ABC = 12.6012.60 = 30 độ

góc A= 180 độ - 30 độ - 30 độ = 120 độ

góc KCN = góc BCO = 60 độ

Nguyễn Lê Phước Thịnh
15 tháng 3 2021 lúc 21:09

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(gt)

Do đó: ΔABM=ΔACN(C-g-c)

Suy ra: AM=AN(Hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Nguyễn Khánh
Xem chi tiết
Etermintrude💫
15 tháng 3 2021 lúc 20:35

undefinedundefined

๖²⁴ʱ☪á ☪ℴท︵❣
15 tháng 3 2021 lúc 20:29

a) tam giác ABC cân 

=> góc ABC=góc ACB

góc MBA+góc ABC=180độ (kề bù)

góc NCA+góc ACB=180độ(kề bù)

=> góc ABM=góc ACN

xét 2 tam giác ABM và ACN có: 

AB=AC(tam giác ABC cân )

góc ABM=góc ACN(chứng minh trên)

BM=CN(gt)

=> 2 tam giác ABM=ACN(c.g.c)

=> AM=AN(2 cạnh tương ứng)

=> tam giác AMN cân ở A

b) tam giác AMN cân ở A

=> góc M=góc N

xét 2 tam giác MHB và NKC có:

góc MHB=góc NKC(=90độ)

MB=NC(gt)

góc M =góc N(chứng minh trên)

=> 2 tam giác MHB=NKC(cạnh huyền - góc nhọn)

=> BH=CK(2 cạnh tương ứng)

c) ta có : AM=AN  (theo a) 

               HM=KN (tam giác MHB=tam giác NKC)

AM = AH+HM

AN= AK+ KN 

=> AH= AK

d) tam giác MHB=tam giác NKC(theo b) 

=> góc HBM=góc KCN(2 góc tương ứng)

góc HBM=góc OBC(đối đỉnh)

góc KCN=góc OCB(đối đỉnh)

=> góc OBC=góc OCB

=> tam giác OBC cân ở O

e) tam giác ABC có AB=AC ; góc BAC=60độ 

=> tam giác ABC đều 

=> AB=AC=BC

mà BC=BM(gt)

=> BM=AB

=>tam giác ABM cân ở B

góc ABC + góc ABM=180độ (kề bù)

=> góc ABM =180độ - góc ABC

                     =180độ-60độ

                     =120độ

tam giác ABC cân ở B 

=> góc BAM=góc BMA =(180độ-góc ABM) / 2=1800−12002=6002=3001800−12002=6002=300

vậy góc AMN=30độ

SonGoku
15 tháng 3 2021 lúc 20:33

a) tam giác ABC cân 

=> góc ABC=góc ACB

góc MBA+góc ABC=180độ (kề bù)

góc NCA+góc ACB=180độ(kề bù)

=> góc ABM=góc ACN

xét 2 tam giác ABM và ACN có: 

AB=AC(tam giác ABC cân )

góc ABM=góc ACN(chứng minh trên)

BM=CN(gt)

=> 2 tam giác ABM=ACN(c.g.c)

=> AM=AN(2 cạnh tương ứng)

=> tam giác AMN cân ở A

b) tam giác AMN cân ở A

=> góc M=góc N

xét 2 tam giác MHB và NKC có:

góc MHB=góc NKC(=90độ)

MB=NC(gt)

góc M =góc N(chứng minh trên)

=> 2 tam giác MHB=NKC(cạnh huyền - góc nhọn)

=> BH=CK(2 cạnh tương ứng)

c) ta có : AM=AN  (theo a) 

               HM=KN (tam giác MHB=tam giác NKC)

AM = AH+HM

AN= AK+ KN 

=> AH= AK

d) tam giác MHB=tam giác NKC(theo b) 

=> góc HBM=góc KCN(2 góc tương ứng)

góc HBM=góc OBC(đối đỉnh)

góc KCN=góc OCB(đối đỉnh)

=> góc OBC=góc OCB

=> tam giác OBC cân ở O

e) tam giác ABC có AB=AC ; góc BAC=60độ 

=> tam giác ABC đều 

=> AB=AC=BC

mà BC=BM(gt)

=> BM=AB

=>tam giác ABM cân ở B

góc ABC + góc ABM=180độ (kề bù)

=> góc ABM =180độ - góc ABC

                     =180độ-60độ

                     =120độ

tam giác ABC cân ở B 

=> góc BAM=góc BMA =(180độ-góc ABM) / 2=1800−12002=6002=3001800−12002=6002=300

vậy góc AMN=30độ

cương Bùi
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2022 lúc 8:39

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó:ΔBME=ΔCNF

Trương Minh Duy
Xem chi tiết
Nguyễn Ngọc Anh Minh
7 tháng 1 2022 lúc 9:13

a/ 

Ta có

\(\widehat{ABC}=\widehat{ACB}\) (2 góc ở đáy của tg cân ABC) (1)

\(\widehat{ABM}+\widehat{ABC}=\widehat{ACN}+\widehat{ACB}=180^o\)(2)

Từ (1) và (2) \(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét \(\Delta ABM\) và \(\Delta ACN\) có

AB=AC (cạnh bên của tg cân ABC)

BM=CN (gt)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

\(\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A

b/

Xét tg vuông BME và tg vuông CNF có

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\Rightarrow\widehat{AMN}=\widehat{ANM}\) (2 góc ở đáy của tg cân AMN)

BM=CN (gt)

\(\Rightarrow\Delta BME=\Delta CNF\) (Hai tg vuông có cạnh huyền và một góc nhọn tương ứng = nhau thì bằng nhau)

c/

Xét tg cân AMN có AM=AN (1)

\(\Delta BME=\Delta CNF\left(cmt\right)\Rightarrow ME=NF\) (2)

Từ (1) và (2) => AM-ME=AN-NF => AE=AF

Xét tg vuông AEO và tg vuông AFO có

AE=AF (cmt)

AO chung

\(\Rightarrow\Delta AEO=\Delta AFO\) (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau thì bằng nhau)

\(\Rightarrow\widehat{OAE}=\widehat{OAF}\) => AO là phân giác của \(\widehat{MAN}\)

d/

Ta có 

\(\widehat{HMN}=\widehat{HMA}-\widehat{AMN}=90^o-\widehat{AMN}\)

\(\widehat{HNM}=\widehat{HNA}-\widehat{ANM}=90^o-\widehat{ANM}\)

Mà \(\widehat{AMN}=\widehat{ANM}\)

\(\Rightarrow\widehat{HMN}=\widehat{HNM}\Rightarrow\Delta HMN\) cân tại H 

Ta có

\(OE\perp AM;HM\perp AM\)=> OE//HM \(\Rightarrow\widehat{AOE}=\widehat{AHM}\) (góc đồng vị)

Chứng minh tương tự ta cũng có OF//HN \(\Rightarrow\widehat{AOF}=\widehat{AHN}\) (góc đồng vị)

Mà \(\Delta AEO=\Delta AFO\Rightarrow\widehat{AOE}=\widehat{AF}\)

\(\Rightarrow\widehat{AHM}=\widehat{AHN}\)=> HO là phân giác của \(\widehat{MHN}\)

Xét tg cân HMN có

 HO là phân giác của \(\widehat{MHN}\)=> HO là đường  trung trực của tg HMN (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực) => \(HO\perp MN\) tại trung điểm của MN

Xét tg cân AMN có

AO là đường phân giác của \(\widehat{MAN}\) (cmt) => AO là đường trung trực của tg AMN (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực) => \(AO\perp MN\) tại trung điểm của MN

=> AO trung HO (Từ 1 điểm trên đường thẳng chỉ duy nhất dựng được 1 đường thẳng vuông góc với đường thẳng đã cho)

=> A; O; H thẳng hàng

Khách vãng lai đã xóa
Chu Thuy Hanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2022 lúc 20:46

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔBME=ΔCNF

Chu Thuy Hanh
Xem chi tiết
Thiên Ly
Xem chi tiết
Phía sau một cô gái
8 tháng 1 2022 lúc 16:02

( Hình bạn tự vẽ giúp mình nha )

a) Xét △ ABM và △ ACN có

          AB = AC

          BM = CN

         \(\widehat{ABM}=\widehat{ACN}\)

⇒ △ ABM = △ ACN ( c - g - c )

⇒ AM = AN ( hai cạnh tương ứng )

Suy ra: △ AMN cân tại A

b) Xét tam giác vuông BME và tam giác vuông CNF ta có:

         MB = CN

         \(\widehat{EMB}=\widehat{CNF}\)   ( vì △ AMN cân tại A )

⇒ △ BME = △ CNF ( ch - gn )

c) Vì △ BME = △ CNF ( cmt )

⇒ ME = CF

⇒ EA = FA  

Xét tam giác vuông EAO và tam giác vuông AOF ta có:

          AE = FA

          AO cạnh chung

⇒ △ EOA = △ FOA ( ch - cgv )

⇒ \(\widehat{EAO}=\widehat{FAO}\)

Hay AO là tia phân giác góc \(\widehat{MAN}\)

d) Ta có:     EO ⊥ AM

                   MH ⊥ AM

⇒ EO // MH

Lại có:    \(\widehat{AOE}=\widehat{AHM}\) ( cùng phụ \(\widehat{EAO}\) )

Từ đó suy ra:    A, O, H thẳng hàng

Trịnh Linh
Xem chi tiết
Lotus
10 tháng 11 2019 lúc 7:55

a)ta có AB=AC

=)TAM giác ABC cân tại A 

=)Góc B2=góc C1

Lại có B1+B2=180độ(kề bù)

C1+C2=180độ(kề bù)

mà B2=C1(cmt)

=)B1=C2

Xét tam giác ABM và tam giác ACN có

BM=CN(GT)

B1=C2(CMT)

AB=AC(GT)

=)TAM giác ABM = tam giác ACN (c-g-c)

=)AM=AN(2 cạnh tương ứng )

bạn tự viết kí hiệu nhá mik ko bít cách viết

Khách vãng lai đã xóa
Lotus
10 tháng 11 2019 lúc 8:01

b)ta có tam giác ABM=tam giác ACN (cmt)

=)góc M=góc N (2 góc tương ứng)

xét tam giác vuông BME và tam giác vuông CNF có

BM=CN(gt)

góc M=GÓC N(cmt)

=)tam giác vuông BME=tam giác vuông CNF (cạnh huyền-góc nhọn)

Khách vãng lai đã xóa
Lotus
10 tháng 11 2019 lúc 8:14

c)gọi H là giao điểm của BC và AO 

xét tam giác BHA và tam giac CHA

AH chung

AB=AC(GT)

B2=C1(CMT)

=)TAM GIÁC BHA=tam giác CHA(c-g-c)

=)HC=HB(2 cạnh tương ứng)

Mà tam giác ABC cân tại A (cmt)

=)AH hay AO là tia phân giác của GÓC BAC (trong tam giác cân đường trung tuyến là đường phân giác)

Lại có tam giác ABM=tam giác ACM (cmt)

=)góc A1 = GÓC A4

có A2=A3 ( AO là phân giác của góc BAC)

=)A1+A2=A3+A4

=) AO là tia phân giác góc MAN

Khách vãng lai đã xóa