Cho tam giác ABC cân tại A . Trên tia đối của tia BC lấy điểm M ,trên tia đối của tia CB lấy điểm N sao cho BM = CN .
a)chứng minh tam giác AMN cân
b)kẻ BE vuông góc với AM , CF vuông góc với AN . Chứng minh yam giác BME = tam giác CNF
c) EB và FC kéo dài cắt nhau tại O . Chứng minh AO là tia phân giác của góc MAN
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó:ΔBME=ΔCNF