Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thiên Ly

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN.
a) Chứng minh tam giác AMN cân
b) Kẻ BE vuông góc với AM (E thuộc AM), CF vuông góc với AN (F thuộc AN). Chứng minh tam giác BME= tam giác CNF.

c) EB và FC kéo dài cắt nhau tại O. Chứng minh AO là tia phân giác của góc MAN.

d) Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau ở H. Chứng minh ba điểm A, O, H thẳng hàng.

Phía sau một cô gái
8 tháng 1 2022 lúc 16:02

( Hình bạn tự vẽ giúp mình nha )

a) Xét △ ABM và △ ACN có

          AB = AC

          BM = CN

         \(\widehat{ABM}=\widehat{ACN}\)

⇒ △ ABM = △ ACN ( c - g - c )

⇒ AM = AN ( hai cạnh tương ứng )

Suy ra: △ AMN cân tại A

b) Xét tam giác vuông BME và tam giác vuông CNF ta có:

         MB = CN

         \(\widehat{EMB}=\widehat{CNF}\)   ( vì △ AMN cân tại A )

⇒ △ BME = △ CNF ( ch - gn )

c) Vì △ BME = △ CNF ( cmt )

⇒ ME = CF

⇒ EA = FA  

Xét tam giác vuông EAO và tam giác vuông AOF ta có:

          AE = FA

          AO cạnh chung

⇒ △ EOA = △ FOA ( ch - cgv )

⇒ \(\widehat{EAO}=\widehat{FAO}\)

Hay AO là tia phân giác góc \(\widehat{MAN}\)

d) Ta có:     EO ⊥ AM

                   MH ⊥ AM

⇒ EO // MH

Lại có:    \(\widehat{AOE}=\widehat{AHM}\) ( cùng phụ \(\widehat{EAO}\) )

Từ đó suy ra:    A, O, H thẳng hàng


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Trịnh Linh
Xem chi tiết
Trương Minh Duy
Xem chi tiết
Phạm Anh Thư
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Thùy Lâm
Xem chi tiết
qlamm
Xem chi tiết
dragon gamer
Xem chi tiết
Nguyễn Khánh
Xem chi tiết