tim mde pt x+2\(\sqrt{< 2-x>< 2x+2>}\) = m+4(\(\sqrt{2-x}+\sqrt{2x+2}\)) co nghiem
tim tham so m de phuong trinh \(x^2\)-2x+2-2(m+1)(x-1)= \(4\sqrt{\left(x-1\right)\left(2x^2-4x+4\right)}\) co nghiem
tim tham so m de phuong trinh \(x^2\)-2x+2-2(m+1)(x-1)= \(4\sqrt{\left(x-1\right)\left(2x^2-4x+4\right)}\) co nghiem
1/ tìm k>0 để pt \(\sqrt{2}-\sqrt{x-1}>k\) co nghiem
2/ \(\sqrt{x^2-1}+\sqrt{x+1}=m\) tìm m để pt có nghiem
1)
Dễ thấy \(f(x)=\sqrt{2}-\sqrt{x-1}\leq \sqrt{2}\) nên chỉ cần $0<k<\sqrt{2}$ là bất phương trình có nghiệm
2)
Xét \(y=\sqrt{x^2-1}+\sqrt{x+1}; y'=0\Leftrightarrow x=-1\)
Do đó $y_{min}=0$, hàm số không tồn tại max. Với đk $m$ để phương trình có nghiệm thì chỉ cần $m\geq 0$ (PT luôn có nghiệm khi $m$ nằm trong khoảng max, min)
tim nghiem nguyen cua phuong trinh: \(\left(x^2+1\right)\sqrt{1-x}-\left(2x+x^3\right)\sqrt{x+1}=3x^4\sqrt{2x}\)
tim m de pt vo nghiem : \(\sqrt{x^2-10x+m}=2-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}2-x\ge0\\x^2-10x+m=\left(2-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x^2-10x+m=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x=\dfrac{m-4}{6}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình vô nghiệm khi:
\(\dfrac{m-4}{6}>2\Rightarrow m>16\)
1. Tim nghiem nguyen cua pt:
\(\sqrt{9x^2+16x+96}=3x-16y-24\)
2. Tim nghiem nguyen duong:
\(2+\sqrt{x+\frac{1}{4}+\sqrt{x+\frac{1}{4}}}=4\)
Không biết bạn có gõ đúng đề cả 2 câu không ? Câu 2 không có nghiệm nguyên dương nhé bạn. Bạn xem lại.
có đúng đề không bạn
tìm m để pt có nghiệm
\(6+x+2\sqrt{\left(4-x\right)\left(2x-2\right)}=m+4\left(\sqrt{4-x}+\sqrt{2x-2}\right)\)
GIẢI CÁC PT SAU:
\(\sqrt{x^2+5x+1}=\sqrt{x+1}\)
\(\sqrt{x^2+2x+4}=\sqrt{2-x}\)
\(\sqrt{2x+4}-\sqrt{2-x}=0\)
Lời giải:
1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$
PT $\Leftrightarrow x^2+5x+1=x+1$
$\Leftrightarrow x^2+4x=0$
$\Leftrightarrow x(x+4)=0$
$\Rightarrow x=0$ hoặc $x=-4$
Kết hợp đkxđ suy ra $x=0$
2. ĐKXĐ: $x\leq 2$
PT $\Leftrightarrow x^2+2x+4=2-x$
$\Leftrightarrow x^2+3x+2=0$
$\Leftrightarrow (x+1)(x+2)=0$
$\Leftrightarrow x+1=0$ hoặc $x+2=0$
$\Leftrightarrow x=-1$ hoặc $x=-2$
3.
ĐKXĐ: $-2\leq x\leq 2$
PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$
$\Leftrightarrow 2x+4=2-x$
$\Leftrightarrow 3x=-2$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP