tìm m để phương trình sau có nghiệm
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=m\)
tìm m để các phương trình sau có nghiệm
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}\)
Cho các số thực x,y thỏa mãn \(x+y+1=2\left(\sqrt{x-2}+\sqrt{y+3}\right)\). Giá trị lớn nhất của biểu thức \(M=3^{x+y-4}+\left(x+y+1\right).2^{7-x-y}-3\left(x^2+y^2\right)\) bằng
cho x,y thỏa mãn: \(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\) tìm GTLN, GTNN của P=\(\left(x+y\right)^2-\sqrt{9-x-y}+\frac{1}{\sqrt{x+y}}\)
Tìm Max, Min của hàm số:
1) \(y=\dfrac{x+1+\sqrt{x-1}}{x+1+2\sqrt{x-1}}\)
2) \(y=\sin^{2016}x+\cos^{2016}x\)
3) \(y=2\cos x-\dfrac{4}{3}\cos^3x\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
4) \(y=\sin2x-\sqrt{2}x+1,x\in\left[0;\dfrac{\pi}{2}\right]\)
5) \(y=\dfrac{4-cos^2x}{\sqrt{sin^4x+1}},x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{3}\right]\)
tìm m để pt có nghiệm
\(3\sqrt{x-1}+m\sqrt{x+1}=\sqrt[4]{x^2-1}\)
tìm m để pt sau có nghiệm:
\(\sqrt[4]{x^2+1}-\sqrt{x}=m\)
Cho 2 số thực \(x,y\) thỏa \(2y^3+7y+2x\sqrt{1-x}=3\sqrt{1-x}+3\left(2y^2+1\right)\). Tìm giá trị lớn nhất của biểu thức \(P=x+2y\).
Tìm tất cả giá trị \(m\) để giá trị lớn nhất của hàm số:
1/ \(y=\dfrac{2x+m}{x+1}\) trên \(\left[0;1\right]\) bằng 2.
2/ \(y=\left|x^3-3x^2+m\right|\) trên \(\left[0;3\right]\) bằng 5.
3/ \(y=\left|\dfrac{x^2+mx+m}{x+1}\right|\) trên \(\left[1;2\right]\) bằng 2.
4/ \(y=\left|\dfrac{1}{4}x^4-\dfrac{19}{2}x^2+30x+m-20\right|\) trên \(\left[0;2\right]\) không vượt quá 20.